Date: Tuesday 31st March 2020 Time: 14:00 - 15:00 UK Time Speakers: Ketil Tvermosegaard (GSK).
The slides for this event can be downloaded here.
This webinar is free for PSI Members and Non-Members.
Label-based flow cytometry allows the quantification of target features of interest by attaching fluorophores (labels) to antibodies and measuring the resulting fluorescence at the relevant wavelengths. This is widely used for cell sorting, i.e., determining cell types.
Image flow cytometry is a technology which enables single cell images in cell sorting experiments. Problematically, directly using this data for classification involves manual inspection of many thousands of images. This creates a bottleneck for analysis and scalability.
As part of an epithelial barrier project; a Medium Throughput screen was conducted to investigate whether candidate CRISPR gene knockouts modulated the proportion of cells which differentiated into ciliated cells (important for indications such as COPD and asthma).
However, the team hypothesized that traditional label-based flow cytometry did not always properly classify cell types. We were approached about developing a scalable way of using image flow cytometry for determining whether cells are ciliated. This would provide them with an alternative endpoint and a way to test their hypothesis.
In this project, we;
1) Developed Python code to extract images from the proprietary file format
2) Built a proof-of-concept convolutional neural network. Results here suggested the problem was solvable with Deep Learning
3) Initiated a Tessella Analytics Partnership project with Tessella
4) Worked with Tessella to steer their development of an appropriate architecture for the neural network, which achieved better-than-human performance
5) Applied the trained network to a validation screen and confirmed disagreements between label-based and label-free flow cytometry.
Scientific Meetings
PSI ToxSIG Webinar: Label-free Classification of Ciliated Cells using Deep Learning.
Date: Tuesday 31st March 2020 Time: 14:00 - 15:00 UK Time Speakers: Ketil Tvermosegaard (GSK).
The slides for this event can be downloaded here.
This webinar is free for PSI Members and Non-Members.
Label-based flow cytometry allows the quantification of target features of interest by attaching fluorophores (labels) to antibodies and measuring the resulting fluorescence at the relevant wavelengths. This is widely used for cell sorting, i.e., determining cell types.
Image flow cytometry is a technology which enables single cell images in cell sorting experiments. Problematically, directly using this data for classification involves manual inspection of many thousands of images. This creates a bottleneck for analysis and scalability.
As part of an epithelial barrier project; a Medium Throughput screen was conducted to investigate whether candidate CRISPR gene knockouts modulated the proportion of cells which differentiated into ciliated cells (important for indications such as COPD and asthma).
However, the team hypothesized that traditional label-based flow cytometry did not always properly classify cell types. We were approached about developing a scalable way of using image flow cytometry for determining whether cells are ciliated. This would provide them with an alternative endpoint and a way to test their hypothesis.
In this project, we;
1) Developed Python code to extract images from the proprietary file format
2) Built a proof-of-concept convolutional neural network. Results here suggested the problem was solvable with Deep Learning
3) Initiated a Tessella Analytics Partnership project with Tessella
4) Worked with Tessella to steer their development of an appropriate architecture for the neural network, which achieved better-than-human performance
5) Applied the trained network to a validation screen and confirmed disagreements between label-based and label-free flow cytometry.
Training Courses
PSI ToxSIG Webinar: Label-free Classification of Ciliated Cells using Deep Learning.
Date: Tuesday 31st March 2020 Time: 14:00 - 15:00 UK Time Speakers: Ketil Tvermosegaard (GSK).
The slides for this event can be downloaded here.
This webinar is free for PSI Members and Non-Members.
Label-based flow cytometry allows the quantification of target features of interest by attaching fluorophores (labels) to antibodies and measuring the resulting fluorescence at the relevant wavelengths. This is widely used for cell sorting, i.e., determining cell types.
Image flow cytometry is a technology which enables single cell images in cell sorting experiments. Problematically, directly using this data for classification involves manual inspection of many thousands of images. This creates a bottleneck for analysis and scalability.
As part of an epithelial barrier project; a Medium Throughput screen was conducted to investigate whether candidate CRISPR gene knockouts modulated the proportion of cells which differentiated into ciliated cells (important for indications such as COPD and asthma).
However, the team hypothesized that traditional label-based flow cytometry did not always properly classify cell types. We were approached about developing a scalable way of using image flow cytometry for determining whether cells are ciliated. This would provide them with an alternative endpoint and a way to test their hypothesis.
In this project, we;
1) Developed Python code to extract images from the proprietary file format
2) Built a proof-of-concept convolutional neural network. Results here suggested the problem was solvable with Deep Learning
3) Initiated a Tessella Analytics Partnership project with Tessella
4) Worked with Tessella to steer their development of an appropriate architecture for the neural network, which achieved better-than-human performance
5) Applied the trained network to a validation screen and confirmed disagreements between label-based and label-free flow cytometry.
Journal Club
PSI ToxSIG Webinar: Label-free Classification of Ciliated Cells using Deep Learning.
Date: Tuesday 31st March 2020 Time: 14:00 - 15:00 UK Time Speakers: Ketil Tvermosegaard (GSK).
The slides for this event can be downloaded here.
This webinar is free for PSI Members and Non-Members.
Label-based flow cytometry allows the quantification of target features of interest by attaching fluorophores (labels) to antibodies and measuring the resulting fluorescence at the relevant wavelengths. This is widely used for cell sorting, i.e., determining cell types.
Image flow cytometry is a technology which enables single cell images in cell sorting experiments. Problematically, directly using this data for classification involves manual inspection of many thousands of images. This creates a bottleneck for analysis and scalability.
As part of an epithelial barrier project; a Medium Throughput screen was conducted to investigate whether candidate CRISPR gene knockouts modulated the proportion of cells which differentiated into ciliated cells (important for indications such as COPD and asthma).
However, the team hypothesized that traditional label-based flow cytometry did not always properly classify cell types. We were approached about developing a scalable way of using image flow cytometry for determining whether cells are ciliated. This would provide them with an alternative endpoint and a way to test their hypothesis.
In this project, we;
1) Developed Python code to extract images from the proprietary file format
2) Built a proof-of-concept convolutional neural network. Results here suggested the problem was solvable with Deep Learning
3) Initiated a Tessella Analytics Partnership project with Tessella
4) Worked with Tessella to steer their development of an appropriate architecture for the neural network, which achieved better-than-human performance
5) Applied the trained network to a validation screen and confirmed disagreements between label-based and label-free flow cytometry.
Webinars
PSI ToxSIG Webinar: Label-free Classification of Ciliated Cells using Deep Learning.
Date: Tuesday 31st March 2020 Time: 14:00 - 15:00 UK Time Speakers: Ketil Tvermosegaard (GSK).
The slides for this event can be downloaded here.
This webinar is free for PSI Members and Non-Members.
Label-based flow cytometry allows the quantification of target features of interest by attaching fluorophores (labels) to antibodies and measuring the resulting fluorescence at the relevant wavelengths. This is widely used for cell sorting, i.e., determining cell types.
Image flow cytometry is a technology which enables single cell images in cell sorting experiments. Problematically, directly using this data for classification involves manual inspection of many thousands of images. This creates a bottleneck for analysis and scalability.
As part of an epithelial barrier project; a Medium Throughput screen was conducted to investigate whether candidate CRISPR gene knockouts modulated the proportion of cells which differentiated into ciliated cells (important for indications such as COPD and asthma).
However, the team hypothesized that traditional label-based flow cytometry did not always properly classify cell types. We were approached about developing a scalable way of using image flow cytometry for determining whether cells are ciliated. This would provide them with an alternative endpoint and a way to test their hypothesis.
In this project, we;
1) Developed Python code to extract images from the proprietary file format
2) Built a proof-of-concept convolutional neural network. Results here suggested the problem was solvable with Deep Learning
3) Initiated a Tessella Analytics Partnership project with Tessella
4) Worked with Tessella to steer their development of an appropriate architecture for the neural network, which achieved better-than-human performance
5) Applied the trained network to a validation screen and confirmed disagreements between label-based and label-free flow cytometry.
Careers Meetings
PSI ToxSIG Webinar: Label-free Classification of Ciliated Cells using Deep Learning.
Date: Tuesday 31st March 2020 Time: 14:00 - 15:00 UK Time Speakers: Ketil Tvermosegaard (GSK).
The slides for this event can be downloaded here.
This webinar is free for PSI Members and Non-Members.
Label-based flow cytometry allows the quantification of target features of interest by attaching fluorophores (labels) to antibodies and measuring the resulting fluorescence at the relevant wavelengths. This is widely used for cell sorting, i.e., determining cell types.
Image flow cytometry is a technology which enables single cell images in cell sorting experiments. Problematically, directly using this data for classification involves manual inspection of many thousands of images. This creates a bottleneck for analysis and scalability.
As part of an epithelial barrier project; a Medium Throughput screen was conducted to investigate whether candidate CRISPR gene knockouts modulated the proportion of cells which differentiated into ciliated cells (important for indications such as COPD and asthma).
However, the team hypothesized that traditional label-based flow cytometry did not always properly classify cell types. We were approached about developing a scalable way of using image flow cytometry for determining whether cells are ciliated. This would provide them with an alternative endpoint and a way to test their hypothesis.
In this project, we;
1) Developed Python code to extract images from the proprietary file format
2) Built a proof-of-concept convolutional neural network. Results here suggested the problem was solvable with Deep Learning
3) Initiated a Tessella Analytics Partnership project with Tessella
4) Worked with Tessella to steer their development of an appropriate architecture for the neural network, which achieved better-than-human performance
5) Applied the trained network to a validation screen and confirmed disagreements between label-based and label-free flow cytometry.
Upcoming Events
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
Topic: R Package Basics.
Our monthly webinar series allows attendees to gain practical knowledge and skills in open-source coding and tools, with a focus on applications in the pharmaceutical industry. This month’s session, “R Package Basics,” will introduce the fundamentals of working with R packages—covering how to install, load, and manage them effectively to support data analysis and reproducible research. The session will provide a solid starting point, clarify common misconceptions, and offer valuable resources for continued learning.
Date: Ongoing 6 month cycle beginning late April/early May 2026
Are you a member of PSI looking to further your career or help develop others - why not sign up to the PSI Mentoring scheme? You can expand your network, improve your leadership skills and learn from more senior colleagues in the industry.
PSI Book Club Lunch and Learn: Communicating with Clarity and Confidence
If you have read Ros Atkins’ book The Art of Explanation or want to listen to the BBC’s ‘Communicator in Chief’, you are invited to join the PSI Book Club Lunch and Learn, to discuss the content and application with the author, Ros Atkins. Having written the book within the context of the news industry, Ros is keen to hear how we have applied the ideas as statisticians within drug development and clinical trials. There will be dedicated time during the webinar to ASK THE AUTHOR any questions – don’t miss out on this exclusive PSI Book Club event!
Haven’t read the book yet? Pick up a copy today and join us.
Explanation - identifying and communicating what we want to say - is described as an art, in the title of his book. However, the creativity comes from Ros’ discernment in identifying and describing a clear step-by-step process to follow and practice. Readers can learn Ros’ rules, developed and polished throughout his career as a journalist, to help communicate complex written or spoken information clearly.
PSI Training Course: Effective Leadership – the keys to growing your leadership capabilities
This course will consist of three online half-day workshops. The first will be aimed at building trust, the backbone of leadership and a key to becoming effective. This is key to building a solid foundation.
The second will be on improving communication as a technical leader. This workshop will focus on communication strategies for different stakeholders and will involve tips on effective communication and how to develop the skills of active listening, coaching and what improv can teach us about good communication.
The final workshop will bring these two components together to help leaders become more influential. This will also focus on how to use Steven Covey’s 7-Habits, in particular Habits 4, 5 and 6, which are called the habits of communication.
The workshops will be interactive, allowing you to practice the concepts discussed. There will be plenty of time for questions and discussion. There will also be reflective time where you can think about what you are learning and how you might experiment with it.