Group sequential designs with negative binomial data

Ekkehard Glimm1 Tobias Mütze2,3

1Statistical Methodology, Novartis, Basel, Switzerland
2Department of Medical Statistics, University Medical Center Göttingen
3DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany

Thanks to Tim Friede and Heinz Schmidli

PSI/BBS One-day meeting Basel

September 13, 2016
Motivating examples

Fixed design

Group sequential designs

Assessing operating characteristics

Discussion and outlook
Example 1: Clinical trials in heart failure

- Heart failure (HF) with preserved ejection fraction (HFpEF)
- Primary endpoint: Number of heart failure hospitalizations (HFH)
- HFH can be modeled with negative binomial distribution (Rogers et al., 2014)
- Example: the CHARM-Preserved trial (Yusuf et al., 2003)

Table: Heart failure hospitalizations in CHARM-preserved

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Candesartan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>1509</td>
<td>1514</td>
</tr>
<tr>
<td>Total follow-up years</td>
<td>4374.03</td>
<td>4424.62</td>
</tr>
<tr>
<td>Patients with ≥ 1 admission</td>
<td>278</td>
<td>230</td>
</tr>
<tr>
<td>Total admissions</td>
<td>547</td>
<td>392</td>
</tr>
</tbody>
</table>

- Rate ratio for recurrent heart failure hospitalizations according to negative binomial model $\theta = 0.71$
Example 2: Clinical trials in relapsing-remitting multiple sclerosis

- Primary endpoint: number of combined unique active lesions (CULAs)
- CULAs are modeled using the negative binomial distribution
- Example: Phase II study of Siponimod (Selmaj et al., 2013)
 - Placebo and five doses of Siponimod
 - Equal follow-up times (in general either 3 or 6 months)

Table: Monthly number of lesions (at 3 months)

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Siponimod 0.25 mg</th>
<th>Siponimod 0.5 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>61</td>
<td>51</td>
<td>43</td>
</tr>
<tr>
<td>Monthly CULAS</td>
<td>1.39</td>
<td>0.78</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Statistical model

- Number of counts for patient $i = 1, \ldots, n_j$ receiving treatment $j = 1, 2$
 \[Y_{ij} | \lambda_{ij} \sim \text{Pois}(t_{ij} \lambda_{ij}) \]

- Follow-up per patient: t_{ij}

- Gamma-mixture for the rates
 \[\lambda_{ij} \sim \Gamma \left(\frac{1}{\phi}, \frac{1}{\phi \mu_j} \right) \]

- Marginal distribution of counts
 \[Y_{ij} \sim \text{NB} \left(t_{ij} \mu_j, \phi \right) \]

- Expected value and variance
 \[\mathbb{E} [Y_{ij}] = t_{ij} \mu_j \]
 \[\text{Var} [Y_{ij}] = t_{ij} \mu_j (1 + \phi t_{ij} \mu_j) \]
Hypothesis testing I

- Statistical hypothesis

\[H_0 : \frac{\mu_1}{\mu_2} \geq 1 \quad \text{vs.} \quad H_1 : \frac{\mu_1}{\mu_2} < 1. \]

- Hypothesis is tested using a Wald-type test of the maximum-likelihood estimators \(\hat{\beta}_j \) of the log-rates \(\beta_j = \log(\mu_j) \)

- Wald-type test statistic

\[
T = \frac{\hat{\beta}_1 - \hat{\beta}_2}{\sqrt{\frac{1}{\hat{I}_{\beta_1}} + \frac{1}{\hat{I}_{\beta_2}}}} \quad H_0 \overset{\text{asymp.}}{\sim} \mathcal{N}(0, 1)
\]
Hypothesis testing II

- Fisher information of log-rates β_j

$$I_{\beta_j} = \sum_{i=1}^{n_j} \frac{t_{ij} \exp(\beta_j)}{1 + \phi t_{ij} \exp(\beta_j)} = \sum_{i=1}^{n_j} \frac{t_{ij} \mu_j}{1 + \phi t_{ij} \mu_j}.$$

(Reminder: $I_{\beta_j}^{-1}$ is the asymptotic variance of the MLE $\hat{\beta}_j$.)

- Information level I_{fix} describes "knowledge" about unknown treatment effect

$$I_{fix} = \frac{1}{I_{\beta_1}} + \frac{1}{I_{\beta_2}} = \frac{I_{\beta_1} \cdot I_{\beta_2}}{I_{\beta_1} + I_{\beta_2}}$$

- Sample size planning by solving equation

$$I_{fix} = \frac{(q_{1-\beta} - q_{1-\alpha})^2}{(\beta_1 - \beta_2)^2}$$
Group sequential designs: Overview

- Test the hypothesis H_0 at several interim analyses and stop the trial if H_0 can be rejected (stop for efficacy)

- The interim analyses are performed with the Wald-type test using all data available up to that point in time

- Counts of patient i in treatment j at analysis k: $Y_{ijk} \sim NB(t_{ijk}\mu_j, \phi)$

- t_{ijk} is the follow-up time until analysis k

- The final analysis is performed when a prespecified information level I_{max} is attained (maximum information trial)
Critical values of the individual tests c_k must be chosen such that global type I error α, i.e.

$$\alpha \leq \mathbb{P}_{H_0} \left(T_k < c_k \text{ for at least one } k = 1, \ldots, K \right).$$

Allocate global type I error $\alpha = \sum_{k=1}^K \pi_k$

Type I error rate π_k for analysis k

$$\mathbb{P}_{H_0} \left(T_1 \geq c_1, \ldots, T_{k-1} \geq c_{k-1}, T_k < c_k \right) = \pi_k$$

Choose π_k through error spending function $f : [0, \infty) \rightarrow [0, \alpha]$ with $f(0) = 0$ and $f(t) = \alpha$, $t \geq 1$:

$$\pi_1 = f \left(\mathcal{I}_1 / \mathcal{I}_{\text{max}} \right),$$

$$\pi_k = f \left(\mathcal{I}_k / \mathcal{I}_{\text{max}} \right) - f \left(\mathcal{I}_{k-1} / \mathcal{I}_{\text{max}} \right) \quad k = 2, 3, \ldots.$$
Critical values

- First critical value is the normal quantile \(c_1 = q_{\pi_1} \)

- Joint distribution \((T_1, \ldots, T_k)\) required to calculate critical value \(c_k \)

- Asymptotic normality of joint distribution has canonical form
 [Scharfstein et al., 1997]

\[
(T_1, \ldots, T_k)' \to \mathcal{N}(0, \Sigma_k)
\]

with

\[
(\Sigma_k)_{(k_1,k_2)} = (\Sigma_k)_{(k_2,k_1)} = \sqrt{\frac{I_{k_1}}{I_{k_2}}}, \quad 1 \leq k_1 \leq k_2 \leq k.
\]
Practical considerations

- Information level depends on rates μ_j, shape parameter ϕ, follow-up times t_{ijk}, and sample size n_j.

- At analysis k, \mathcal{I}_k not known and is estimated by plugging in the rate and shape maximum-likelihood estimators.

- Critical value c_k is not determined prior to the trial but at the time of analysis k.

- $\hat{\mathcal{I}}_k$ is the estimated information level of stage k obtained with the data available at interim k.
Practical considerations continued

- In practice the following estimators are considered

\[
\hat{\pi}_1 = f \left(\frac{\hat{I}_1}{\hat{I}_{\text{max}}} \right)
\]

\[
\hat{\pi}_k = f \left(\frac{\hat{I}_k}{\hat{I}_{\text{max}}} \right) - f \left(\frac{\hat{I}_{k-1}}{\hat{I}_{\text{max}}} \right) \quad k = 2, 3, \ldots
\]

\[
\left(\hat{\Sigma}_k \right)_{(k_1, k_2)} = \sqrt{\frac{\hat{I}_{k_1}}{\hat{I}_{k_2}}}
\]

- Estimated information might decrease if sample sizes or time between analyses is small, i.e. \(\hat{I}_k < \hat{I}_{k-1} \)
 - then analysis is skipped \(\leftrightarrow \) critical value \(c_k = \infty \)

- ”Locally” allocated type I error preserves the global type I error

\[
\sum_{i=1}^{K} \hat{\pi}_k = \alpha
\]
Planning of group sequential trials

- Power for given set of critical values \(c_1, \ldots, c_K \)

\[
\text{Power} = 1 - \Pr_{H_1} (T_1 \geq c_1, \ldots, T_K \geq c_K)
\]

- For rate ratio \(\theta^\ast \) in alternative, joint distribution \((T_1, \ldots, T_K) \)
 approximately normal with mean vector \(\log(\theta^\ast)(\sqrt{I_1}, \ldots, \sqrt{I_K})' \)

- For planning purposes, we write

\[
I_k = w_k I_{\max}, \quad k = 1, \ldots, K, \quad w_k \in (0, 1]
\]

- Calculate maximum information \(I_{\max} \) required to obtain power of \(1 - \beta \) by solving

\[
1 - \Pr_{\theta^\ast} (T_1 \geq c_1, \ldots, T_K \geq c_K) = \beta
\]

- Sample size, study duration, etc must be selected such that the maximum information is obtained
Simulation study - preface

- In the simulation, interim analysis time points are determined by theoretical information levels \mathcal{I}_k. The actual estimated information levels $\hat{\mathcal{I}}_k$ differ from this.

- Use of spending functions which imitate critical values of Pocock’s test and O’Brien & Fleming’s test

- Recruitment times uniform in fixed accrual period
Simulation scenarios - type I error

- Simulation scenarios motivated by the number of hospitalizations from Example 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error rate α</td>
<td>0.025</td>
</tr>
<tr>
<td>Annual rates $\mu_1 = \mu_2$</td>
<td>0.08, 0.1, 0.12</td>
</tr>
<tr>
<td>Shape parameter ϕ</td>
<td>2, 3, 4, 5</td>
</tr>
<tr>
<td>Group sample size $n_1 = n_2$</td>
<td>600, 1000, 1400</td>
</tr>
<tr>
<td>Stages K</td>
<td>2, 5</td>
</tr>
<tr>
<td>Study duration</td>
<td>3.5 (years)</td>
</tr>
<tr>
<td>Recruitment period</td>
<td>1.25 (years)</td>
</tr>
</tbody>
</table>

- 25,000 Monte Carlo replications per scenario
Results - type I error

<table>
<thead>
<tr>
<th>Fix</th>
<th>O'Brien & Fleming</th>
<th>Pocock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal group specific sample size</td>
<td>Type I error rate</td>
<td>Type I error rate</td>
</tr>
<tr>
<td>600</td>
<td>0.022</td>
<td>0.026</td>
</tr>
<tr>
<td>1000</td>
<td>0.023</td>
<td>0.025</td>
</tr>
<tr>
<td>1400</td>
<td>0.024</td>
<td>0.024</td>
</tr>
</tbody>
</table>

You can see the graph which shows the type I error rates for different sample sizes with Fix, O'Brien & Fleming, and Pocock methods.
Simulation scenarios - power

- Parameters for the Monte Carlo simulation study of the power

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error rate α</td>
<td>0.025</td>
</tr>
<tr>
<td>Annual rate μ_1</td>
<td>0.0875</td>
</tr>
<tr>
<td>Annual rate μ_2</td>
<td>0.125</td>
</tr>
<tr>
<td>Rate ratio μ_1/μ_2</td>
<td>0.7</td>
</tr>
<tr>
<td>Group sample size $n_1 = n_2$</td>
<td>600, 650, ... , 1500</td>
</tr>
<tr>
<td>Shape parameter ϕ</td>
<td>5</td>
</tr>
<tr>
<td>Stages K</td>
<td>2, 5</td>
</tr>
<tr>
<td>Study duration</td>
<td>3.5 (years)</td>
</tr>
<tr>
<td>Recruitment period</td>
<td>1.25 (years)</td>
</tr>
</tbody>
</table>

- 25 000 Monte Carlo replications per scenario
Results - power

- Maximum number of stages: 2
- Maximum number of stages: 5

Design
- Fix
- O'Brien & Fleming
- Pocock

Maximum group specific sample size n_1
Results - stopping times

- Rejections by stage (O’Brien-Fleming, total power of 80%)
Results - gains from stopping early

- Study times at which in theory 25%, 50%, 75%, and 100% of the maximum information level I_{max} is attained
Simulation scenarios - type I error

- Simulation scenarios motivated by the CULAs from Example 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error rate α</td>
<td>0.025</td>
</tr>
<tr>
<td>6-month rates $\mu_1 = \mu_2$</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>Shape parameter ϕ</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>Group sample size $n_1 = n_2$</td>
<td>50, 70, \ldots, 150</td>
</tr>
<tr>
<td>Stages K</td>
<td>2, 3</td>
</tr>
<tr>
<td>Individual follow-up</td>
<td>0.5 (years)</td>
</tr>
<tr>
<td>Recruitment period</td>
<td>1.5 (years)</td>
</tr>
</tbody>
</table>

- 18 scenarios per group sample size for group sequential designs and 9 scenarios for the fixed design
- 25,000 Monte Carlo replications per scenario
Results - type I error

<table>
<thead>
<tr>
<th>Method</th>
<th>Type I Error Rate</th>
<th>Maximum Group Specific Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix</td>
<td></td>
<td>50, 75, 100, 125, 150</td>
</tr>
<tr>
<td>O'Brien & Fleming</td>
<td></td>
<td>50, 75, 100, 125, 150</td>
</tr>
<tr>
<td>Pocock</td>
<td></td>
<td>50, 75, 100, 125, 150</td>
</tr>
</tbody>
</table>

The diagram illustrates the type I error rate for different maximum group specific sample sizes for the Fix, O'Brien & Fleming, and Pocock methods.
Simulation scenarios - power

- Parameters for the Monte Carlo simulation study of the power

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error rate α</td>
<td>0.025</td>
</tr>
<tr>
<td>6-month rate μ_1</td>
<td>4.2</td>
</tr>
<tr>
<td>6-month rate μ_2</td>
<td>8.4</td>
</tr>
<tr>
<td>Group sample size $n_1 = n_2$</td>
<td>70, 75, ..., 140</td>
</tr>
<tr>
<td>Shape parameter ϕ</td>
<td>3</td>
</tr>
<tr>
<td>Stages K</td>
<td>2</td>
</tr>
<tr>
<td>Individual follow-up</td>
<td>0.5 (years)</td>
</tr>
<tr>
<td>Recruitment period</td>
<td>1.5 (years)</td>
</tr>
</tbody>
</table>

- 25,000 Monte Carlo replications per scenario
Results - power

Maximum number of stages: 2

Maximum number of stages: 3

Design
- Fix
- O'Brien & Fleming
- Pocock
Results - analysis specific rejection rate

- Rate of stopping at a specific analysis at a power of 80%

![Graph showing rejection rates for different maximum stages](image-url)
Results - gains from stopping early

- Study times at which in theory 25%, 50%, 75%, and 100% of the maximum information level I_{max} is attained
Discussion and outlook

- Maximum-likelihood theory for negative binomial data results asymptotically in canonical form of joint distribution of test statistic

- Information level depends on rates, shape parameter, follow-up times, and sample size

- Future research on group sequential with negative binomial endpoints
 - Blinded information monitoring
 - Adaptive group sequential designs
 - Optimal designs

- Extend approach to quasi-Poisson models in the future
Bibliography

Semiparametric efficiency and its implication on the design and analysis of group-sequential studies.

S. Yusuf et al. (2003)
Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial.

Analysing recurrent hospitalizations in heart failure: a review of statistical methodology, with application to CHARM-Preserved.

Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study.