

A Bayesian Approach to Augment Active Comparator Efficacy Information with Historic Randomized Clinical Trial Data in a Non-Inferiority Trial

Donna Williams, Cheerful Donna Williams, an autistic artist, author and renowned autism advocate, was diagnosed with breast cancer in 2011.

Wouter Willems


In collaboration with Cristiana Mayer, Kyle Wathen, and the project team

2018 PSI Conference

Amsterdam, 5 June 2018

Hepatitis C

JNJ-4178: 3DAA combination drug

- HCV leading cause of liver disease
- 2% of global population is infected
- Chronic infection, can lead to liver cirrhosis, hepatocellular carcinoma, liver transplantation or death
- Decreased life expectancy (-20 years)
- <5% treated in G5 countries</p>

HPC3003 trial

- Pivotal, phase 3 head-to-head non-inferiority study
- Active control: Harvoni®, the current standard of care (SOC)
- Primary efficacy hypothesis: 6w with JNJ-4178 is non-inferior to 8 or 12 weeks of Harvoni®
- Primary efficacy endpoint: SVR12 (binary)
- Non-inferiority considered as sufficient as efficacy of Harvoni® close to 100%.
- Original design N=400 in JNJ-4178 and N=200 in Harvoni® arm

But there is already a lot of efficacy data on Harvoni®. Do we need to repeat the efficacy assessment of the comparator? Can we incorporate the available data?

- Scientific publications
- Label

WHY? - Borrowing Historic Control Data in NI Setting

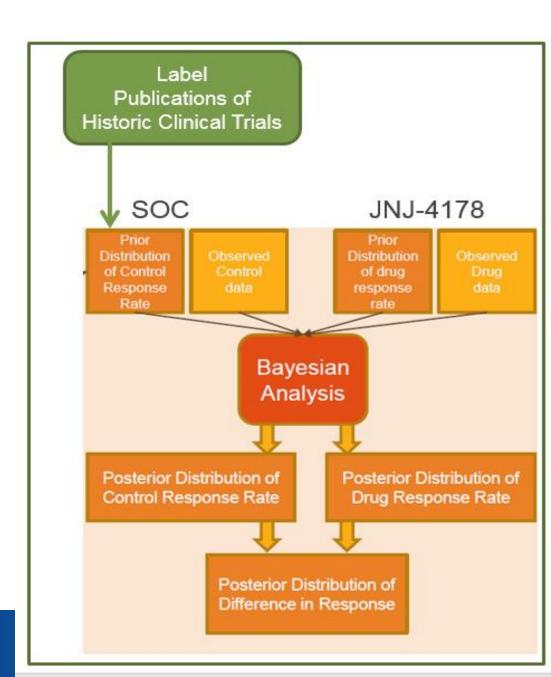
- Motivation: Augment the efficacy data SOC with historic data in a comparable patient population to:
 - Increase probability of positive study to claim non-inferiority: power ↗
 - Reduce resources allocated on Harvoni arm in HTH:
 Harvoni ss \(\)
 - Reduce total time to complete the study: trial duration \(\rightarrow \)
- Method: Use Bayesian approach to statistically combine Harvoni efficacy data from historic control with HTH trial data
- Stats Recommendation: Inquire about FDA/EMA openness to explore this alternative approach with a question in the briefing book

Factors Supporting Borrowing Historical Data

- ✓ Expected <u>large treatment effect:</u> yes, SVR12 >95%
- ✓ <u>Consistency</u> across historical control response rates: yes, consistent in SOC ph3 results
- ✓ <u>Difficult to bias</u> outcome assessment: yes, lab assessment
- ✓ <u>Accurately ascertained outcome</u> not alterable by other therapy or management choices
- ✓ Use of historic data from randomized <u>clinical trials</u> of similar design rather than KOL opinions or subjective sources: yes, SOC ph3 results
- ✓ Historic data <u>not too far back</u> in time (reduced time effect and other potential confounding factors in older clinical trials): SOC ph3 results published in 2014
- ✓ <u>Large</u>, <u>broad-based historical datasets</u> especially relative to total size of patient population and size of treatment arm: large ph3 dataset from SOC

How to Prove Non-Inferiority

Bayesian approach: synthesis of historic SOC data with the HTH results, calculate the posterior probability criterion to declare NI

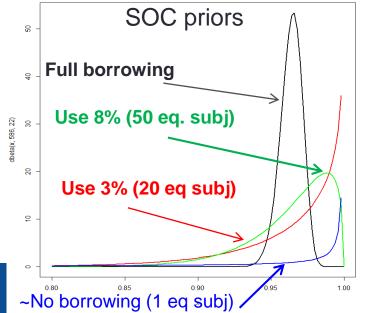

Posterior Probability= Pr[JNJ-4178 SVR12 rate is no worse than SOC by more than 5% NI margin given the study results]

Posterior probability P(r_JNJ-4178 - r_Harvoni >-0.05|data)≥cutoff

=> Which cutoff to chose?

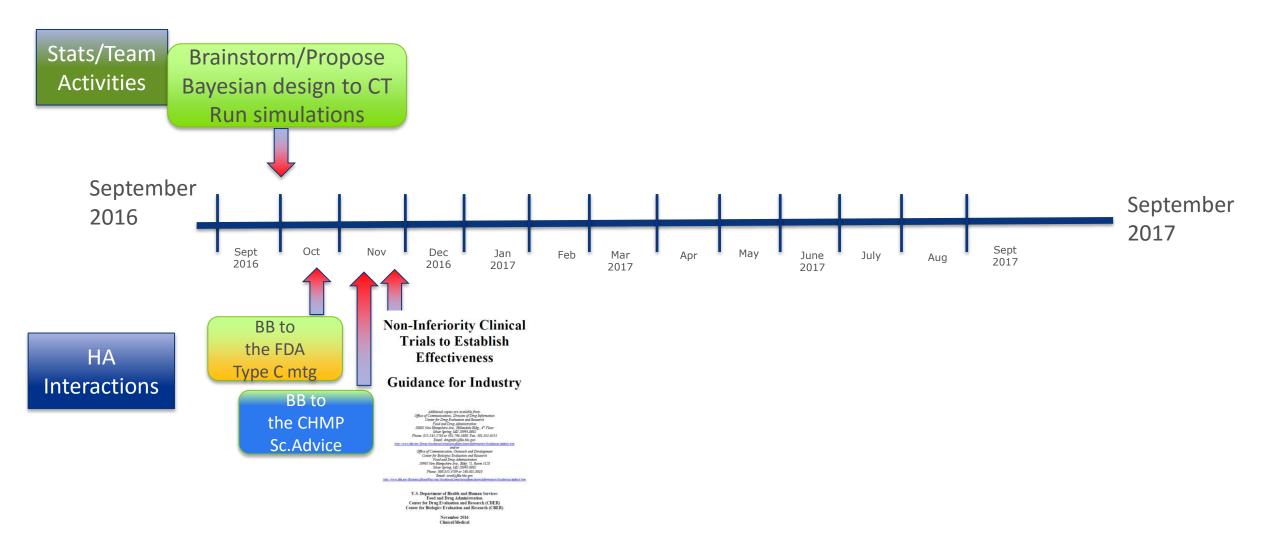
Frequentist approach: The conventional NI design which tests by using 95% Confidence Interval

```
H_0: r_{JNJ-4178} - r_{SOC} \le - NI margin H_a: r_{JNJ-4178} - r_{SOC} > - NI margin Lower Bound 95% CI > - NI margin
```

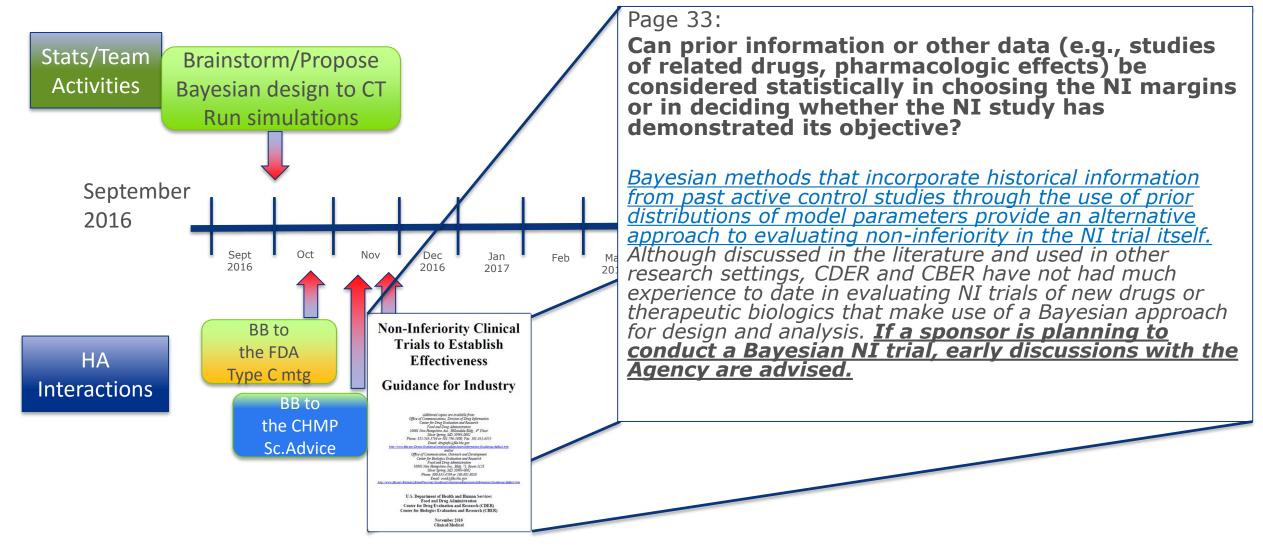


SOC Historic Ph3 Studies – A Simplification

Study SOC 8 or 12 wks	ION1 w/o cirrhosis 12 wks	ION3 w/o cirrhosis 12 wks	ION3 w/o cirrhosis 8 wks	Total
sample size	177	216	215	608
Successes	176	208	202	586
SVR12 rate	99.4%	96.3%	93.9%	96.4%

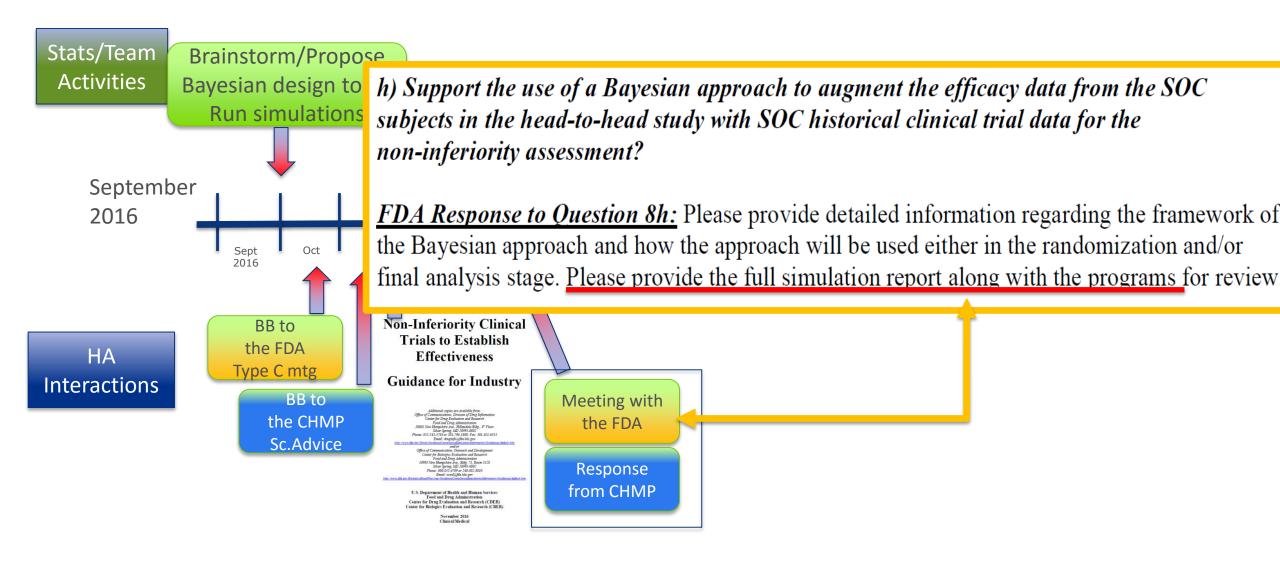
=> How much should we borrow?

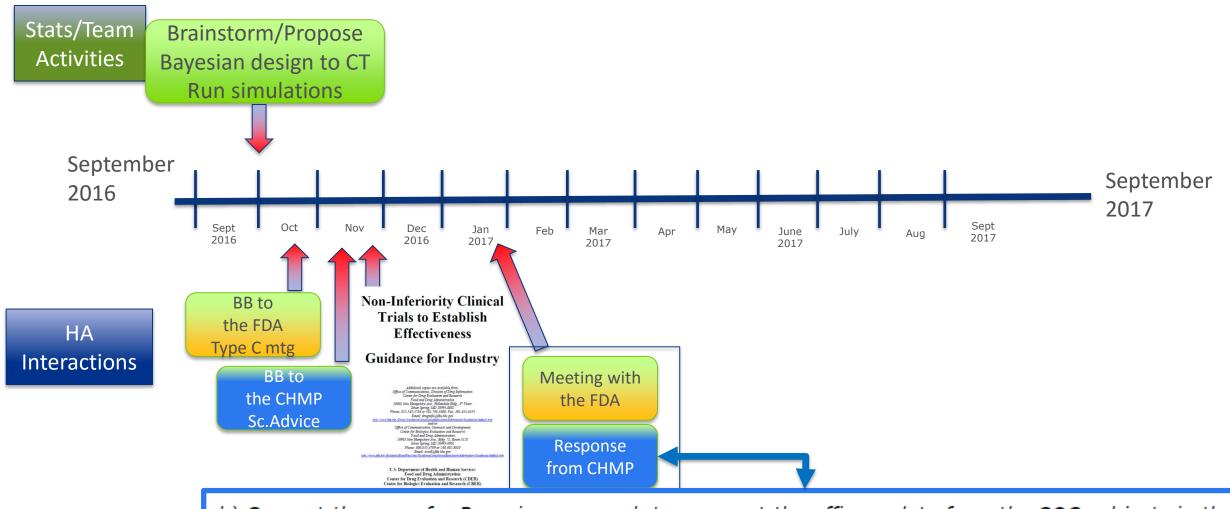

- SOC (8 & 12 weeks) SVR12 rate from the label
- Assume a prior Beta(586,22)
- **Too informative**

Beta(586* w, 22*w) w is the weight TBD based on false positive error control

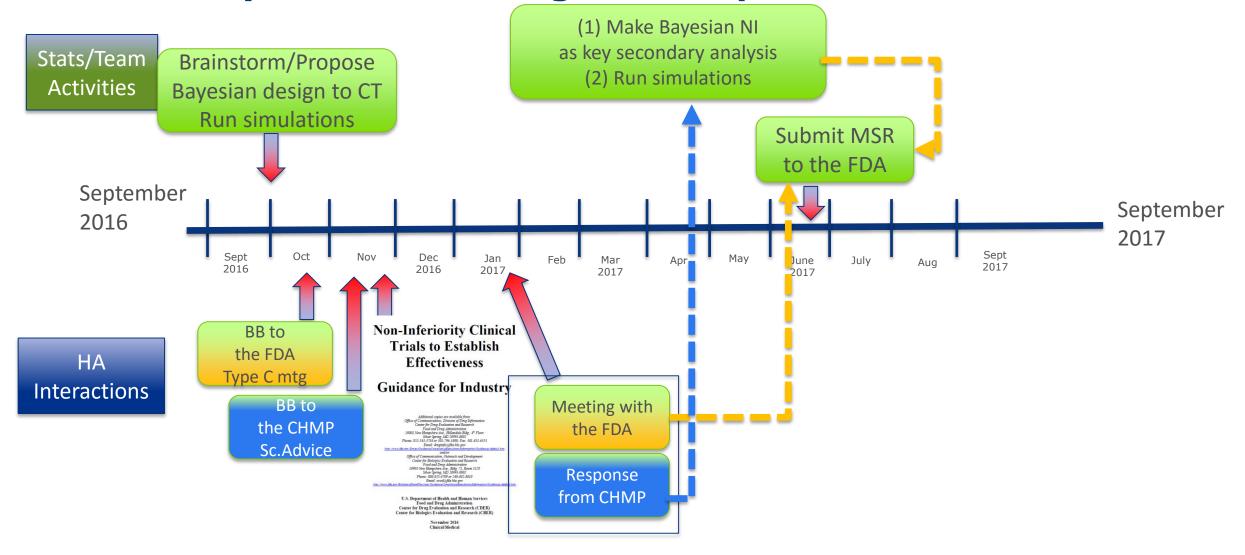


Regulatory Interactions


1 Year Story: Design and Regulatory interactions


1 Year Story: HPC3003 Design Development

1 Year Story: HVC3003 Design Development

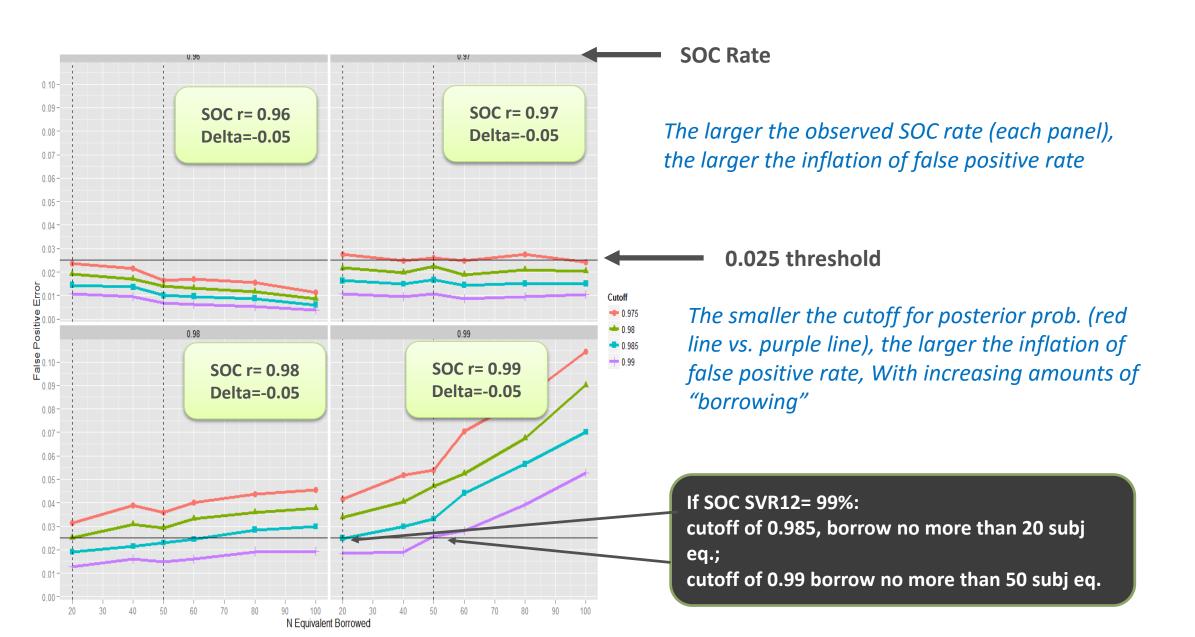


1 Year Story: HVC3003 Design Development

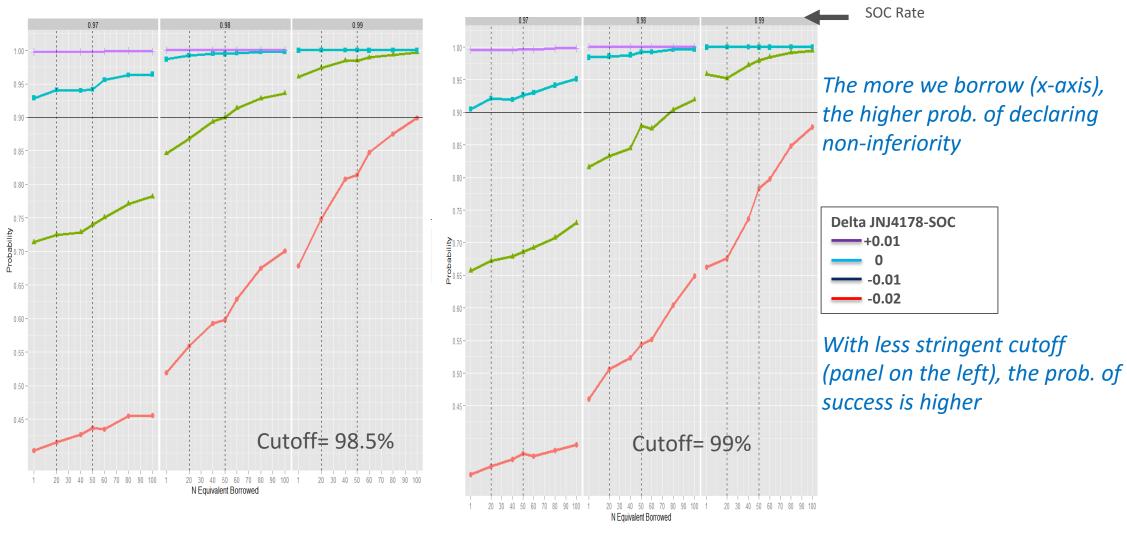
h) Support the use of a Bayesian approach to augment the efficacy data from the SOC subjects in the head-to-head study with SOC historical clinical trial data for the non-inferiority assessment? The Applicant is free to include such features in the SAP. However, the primary analysis should be of a standard, frequentist nature, as this is, in any case, the analytic approach that will be taken from a regulatory perspective.

1 Year Story: HPC3003 Design Development

Simulations


Assumptions and Simulations Scenarios

How much historical information to borrow? Which cutoff for probability? False positive error rate? Power?


Simulation parameters

- Historic studies: pooled mean SVR=0.964
- Non inferiority margin: 0.05
- SOC rates: range between 0.96 and 0.99
- JNJ-4178 rates: range between 0.90 and 0.99
- N for JNJ-4178 = 400
- N combined for SOC = 200 (including borrowed subjects)

False positive by Amount of Borrowing, Delta = -0.05

Posterior Prob > 98.5% vs 99% Criterion

Larger gains in prob. of success with more borrowing for negative delta's, i.e. JNJ-4178 rate< SOC rate (red, green lines vs purple).

SOC Sample Size in HTH Study SOC rate **97%**; **JNJ-4178** rate = **97%**; **Delta** =**0**; **JNJ-4178** n=**400**; **5%** Margin

Posterior Probability (r_JNJ4178 - r_SOC > - 5% | data, priors) ≥ cutoff

N SOC in study	N borrowed (equivalent)	Weight on prior	Cut off	False positive (delta= -0.05)	Prob Success (%)	NI Conventional Power (%)	More
180	20	3.3%	0.985	0.016	94.0%	91.3%	cuto the T
160	40	6.6%	0.985	0.015	94.1%	90.2%	cont
150	50	8.2%	0.985	0.016	94.2%	89.5%	
140	60	9.9%	0.985	0.014	96.0%	88.9%	
100	100	16.4%	0.985	0.015	96.4%	85.1%	
180	20	3.3%	0.99	0.011	92.1%	91.3%	
160	40	6.6%	0.99	0.010	92.0%	90.2%	
150	50	8.2%	0.99	0.011	92.7%	89.5%	Д о и
140	60	9.9%	0.99	0.009	93.0%	88.9%	so st
100 AptivSolui	100	16.4%	0.99	0.010	95.1%	85.1%	ssen

More stringent cutoff 0.99 makes the Type 1 error control tighter.

Which cutoff?

Do we need to be so stringent?

or Johnson-Johnson

SOC Sample Size in HTH Study

SOC rate 97%, 98%, 99%; JNJ-4178 rate = 97%; JNJ-4178 n=400; 5% Margin Cut off =0.985

N SOC in study	N borrowed (equivalent)	SOC Rate	JNJ-4178 Rate	False positive (delta= -0.05)	Prob Success (%)	NI Conventional Power (%)	
180	20	0.97	0.97	0.016	94.0%	91.3%	
160	40	0.97	0.97	0.015	94.1%	90.2%	
150	50	0.97	0.97	0.016	94.2%	89.5%	
140	60	0.97	0.97	0.014	96.0%	88.9%	
180	20	0.98	0.97	0.019	86.8%	83.2%	
160	40	0.98	0.97	0.021	89.3%	82.0%	
150	50	0.98	0.97	0.023	90.0%	81.4%	
140	60	0.98	0.97	0.025	91.4%	80.7%	
180	20	0.99	0.97	0.0249	74.9%	68.6%	
160	40	0.99	0.97	0.030	80.8%	67.9%	
150	50	0.99	0.97	0.033	81.4%	67.6%	
140	60	0.99	0.97	0.044	84.8%	67.1%	ACEUT MON-4
AptivSoluti	ons'						

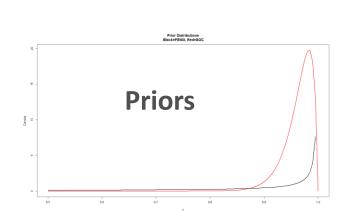
How much borrowing?

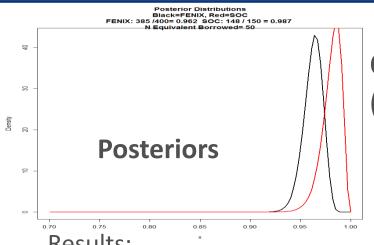
eutical companies mayohnnon

Team Proposal

N SOC in study	N borrowed (equivalent) ~= 8.2% of historic data	SOC Rate	JNJ-41 78 Rate	False positive (delta=-0.05)	Prob Success (%)	NI Convention al Power (%)
150	50	0.97	0.97	0.016	94.2%	89.5%
150	50	0.98	0.97	0.023	90.0%	81.4%
150	50	0.99	0.97	0.033	81.4%	67.6%

Savings ~7MM=


- Δ Cost SOC treatment +
- Δ^{-} Total time recruitment +
- Δ^{-} Time to complete study +
- Δ⁻ Cost of visits & procedures/patient



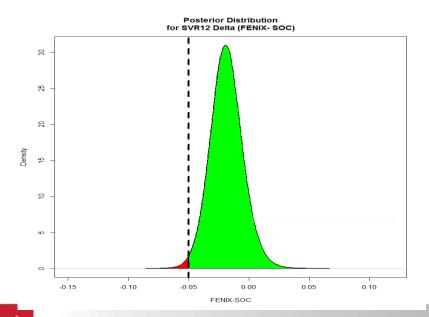
EXAMPLE

Borrow N Equivalent = **50**; JNJ-4178 N=400; SOC N=150

Observed SVR12 (delta=-2.5%) JNJ-4178 96.2% = 385/400 SOC 98.7% = 148/150

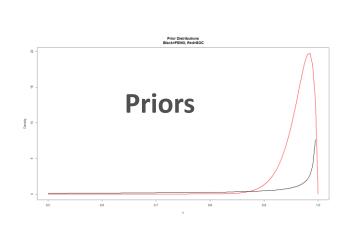
Results:

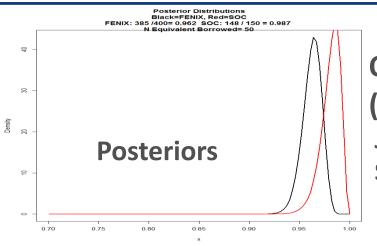
Bayesian approach:


Prob[JN4178>SOC-0.05 | study data] = 99.1%

Conventional NI design:

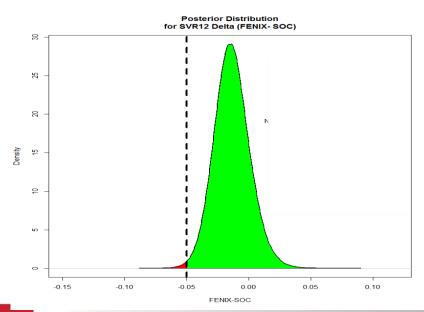
95% CI: CI:[-0.0505; 0.012]


Conclude NI?


- Bayesian **YES** because 99.1% > 98.5%
- Conventional CI NO because -0.0505 < -0.050

EXAMPLE

Borrow N Equivalent = **50**; JNJ-4178 N=400; SOC N=150



Observed SVR12 (delta=-2.5%)

JNJ-4178 96.2% = 385/400

SOC 98% (= 147/150

Results:

Bayesian approach:

Prob[JN4178>SOC-0.05| study data]= 99.55%

Conventional NI design :

95% CI: CI:[-0.0453; 0.0219]

Conclude NI?

- Bayesian YES because 99.1% > 99.55%
- Conventional CI YES because -0.0453 > -0.050

Bayesian versus frequentist

Conclusions

Bayesian approach allowed incorporating historical data in a statistical and regulatory acceptable way

PDUFA VI and FDA Pilot Program on Complex Innovative Design likely to stimulate a more frequent use of such designs

Advice from our experience:

- Start preparing and discussing early (internally and with Agencies)
- Choice and justification historical data are important
- Simulations needed for parameter choice

