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Introduction (I)
I Immuno-oncology (IO) is a rapidly evolving area in the development

of anti-cancer drugs.
I The effect of an IO agent is not typically directed to the tumor

itself; it instead boosts the patient’s immune system, and this effect
may not be observed immediately.

I This may translate to inferior or equal overall survival (OS)
compared to control treatment in the first months of therapy, and
superior OS thereafter leading to non-proportionality of hazards.



Introduction (II)

What to expect from this presentation?

We study the behavior of the weighted log-rank test as an alternative to
the log-rank test with and without delayed effects answering questions
such us:

I How much does the power drop with delayed effects?
I How much power can we gain using weighted log-rank vs. long-rank

in a study with delayed effects?
I What are the optimal ρ and γ (the weighted log-rank parameters)

values?
I Can we guarantee a certain power level?
I What if we think know the delay, but it turns out to be wrong?



Introduction (III)

Simulated example setting

I Group sequential design with 1 interim analysis for efficacy at 75%
of the information fraction (no interim analysis for futility)

I α = 0.025 (1-sided test) and 1− β = 0.9
I O’Brien - Fleming alpha spending function
I Control group’s median survival: 6 months
I Experimental groups’s median survival: 9 months (group with IO

agent)
I Study duration: 25 months
I Recruitment duration: 17.5 month
I Randomization ratio: 1:1



Log-rank vs. weighted log-rank
I Weighted log-rank

statistic:

Tw =

[∑T
t=1 wt(O1t − E1t)

]2

∑T
t=1 w2

t Vt
,

where wt =
Ŝ(t)ρ(1− Ŝ(t))γ and
Ŝ is the estimated
pooled survival
function.

I Potential power
“gain” with respect
to log-rank if we use
(ρ = 0, γ = 1).

I Important parameter value
combinations:
I (ρ = 0, γ = 0) = equal weights

(log-rank)
I (ρ = 1, γ = 0) = weight early

differences
I (ρ = 0, γ = 1) = weight late

differences



Log-rank vs. weighted log-rank (III)
I We consider a study where the sample size has been calculated

assuming proportional hazards, and calculate the empirical power for
each combination of ρ and γ for different delay times.

I For (ρ = 0, γ = 1),
the study is not
sufficiently powered.

I We cannot
guarantee (at least)
80% of power for
medium - large
delays.



Sample size calculation methods

Most common approach:

I Schoenfeld, D. (1981). The asymptotic properties of nonparametric
tests for comparing survival distributions. Biometrika, 68(1),
316-319.

Alternative method that incorporates delayed effects and the Fleming and
Harrington class of weights in the formulation:

I Lakatos, E. (1988). Sample sizes based on the log-rank statistic in
complex clinical trials. Biometrics, 229-241.

I Hasegawa, T. (2014). Sample size determination for the weighted
log-rank test with the Fleming–Harrington class of weights in cancer
vaccine studies. Pharmaceutical statistics, 13(2), 128-135.



Sample size calculation following Hasegawa (2014)
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Delay (months) 0 1 2 3 4 5

(ρ = 0, γ = 0) # of events 258 359 492 686 986 1436
# of patients 330 456 621 860 1228 1777

(ρ = 0, γ = 1) # of events 369 376 406 468 578 741
# of patients 472 478 512 587 719 917



Controlling type-I error - The combination test statistic

I To protect type-I error rate inflation we use the “weighted inverse
normal” combination test statistic:

z∗ =
√

n1
n2

z1 +
√

n2 − n1
n2

z2, (1)

where
I z1 is the weighted log-rank statistic at the interim analysis
I z2 is the weighted log-rank statistic at the final analysis using the

data from second stage alone.
I z1 ∼ N(0, 1), z2 ∼ N(0, 1) and z∗ ∼ N(0, 1)

I With the combination test approach we guarantee type-I error rate
control.



So far...

I We have seen its impact in a group sequential setting.
I We gain some power using weighted-log rank, but this may not be

enough.
I Following Hasegawa (2014), we can guarantee a certain power level

as long as we know the delay.
I We can guarantee type-I error control.

What if we underestimated (or simply don’t know) the delay?

Sample size reassessment
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Mehta and Pocock’s “promising zone” approach (I)

In case ε is out of the range we compute the conditional power:

CPδ̂1
(z1, n2) = 1− Φ

(
zα
√n2 − z1

√n1√
n2 − n1

− z1
√

n2 − n1√n1

)
. (2)

We divide the conditional power results in 3 zones:

I Favorable: If CPδ̂1
(z1, n2) ≥ 0.8.

I Promising: If 0.8 > CPδ̂1
(z1, n2) ≥ CPmin.

I Sample size re-estimation.
I Unfavorable: If CPδ̂1

(z1, n2) < CPmin.

Type-I error is protected as long as CPmin > 0.5 (see Chen et al., (2004)).



Mehta and Pocock’s “promising zone” approach (II)

Some issues with this methodology:

I The results of Chen et al., (2004) don’t allow to increase the sample
size in situations when the greatest benefits might accrue.

I Jennison and Turnbull (2015) showed that it is possible to obtain an
optimal sample size reassessment rule that yields a lower expected
sample size for the same power curve.



Jennison and Turnbull’s “start small then ask for more”
approach (I)

To obtain the optimal number of events at the final analysis (n∗
2), we

need to maximize

CPδ̂1
(z1, n∗

2)− η(n∗
2 − n2), (3)

where η can be considered as “a tuning parameter that controls the
degree to which the sample size may be increased when interim data are
promising but not overwhelming”.



Simulation results (I)
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Simulation results (II)
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Conclusions

I The weighted log-rank with parameter combination (ρ = 0, γ = 1)
outperforms the log-rank test.

I Low values of ρ and high values of γ are hence appropriate.
I However, the difference may not enough when dealing with larger

delayed effects.
I We can guarantee a certain power if we follow the methods

proposed by Lakatos (1988) and Hasegawa (2014).
I Need for type-I error control.

I In case the delay is underestimated (or unknown) at the design
stage, through sample size reassessment we can achieve enough
power at the end of the trial.
I We need to avoid any back-calculation of the conditional power.



Where to find this work?



Thank you for your attention!
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