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Who

Rufibach et al. (2020):

Meller et al. (2019):



Acute Myeloid Leukemia



Acute Myeloid Leukemia

Rare malignant blood disease.

Most common leukemia, lowest survival rate in adults: median survival ≤ 1y.

Recurrent life-threatening infections.

Chemotherapy: modest benefit without cure.

Stem cell transplant:

“Bridge-to-transplant”: Goal of any therapy. Needs complete response (CR) to

initial therapy.

Only way to survive AML.



Mirros

MDM2 Idasanutlin in Relapsed Refractory AML for OS.

Population: R/R AML.

Comparison: Idasanutlin + cytarabine vs. placebo + cytarabine.

Phase III, 2:1 randomized, double-blind, placebo-controlled clinical trial.

Primary endpoint: overall survival.

Planned recruitment: 374 patients.

https://clinicaltrials.gov/ct2/show/NCT02545283

https://clinicaltrials.gov/ct2/show/NCT02545283


How to plan RCT when
some patients may be cured?



Cure proportion model

See e.g. Sun et al. (2018).

Let

S∗i , f
∗
i : survival and density functions of uncured patients.

pi : proportions of patients cured.

Survival and hazard function in each treatment arm (t ≥ 0):

Si (t) = pi + (1− pi )S
∗
i (t),

hi (t) =
(1− pi )f

∗
i (t)

pi + (1− pi )S
∗
i (t)

.

Ratio of hazard functions:

θ(t) = h2(t)/h1(t) =
(1− p2

1− p1

) f ∗2 (t)

f ∗1 (t)

(p1 + (1− p1)S∗1 (t)

p2 + (1− p2)S∗2 (t)

)
.

Even if both S∗i exponential ⇒ θ(t) depends on time (if ≥ 1 pi is > 0).



What if we simply ignored cure proportions?



Cure proportion model – assumptions

Assume effect size for S∗i .

Compute necessary events d using Schoenfeld’s formula:

Study will (typically) be underpowered.

Time to clinical cutoff will be underestimated.

Control arm, based on historical data, H0:

Median OS 6m.

Cure: 0.080.

Targeted effect size treatment arm (for 85% power, H1):

Median OS 9m.

Cure: 0.161.
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Cure proportion model – sample size

To find sample size:

Compute necessary events d0 using Schoenfeld’s formula.

Simulate from assumed Si ’s, compute power for grid of d = d0, . . . , d1.

Choose d such that (unweighted) logrank test gives targeted power.

MIRROS: 2-sided α = 0.05, β = 0.15, some accrual and drop-out assumption.

Assumption S−1
1 (0.5) S−1

2 (0.5) p1 p2 d power time

MIRROS 6.0 9.0 0.080 0.161 275 0.852 38.8

PH, no cure 6.0 9.0 0 0 246 0.858 29.2

MIRROS with 6.0 9.0 0.080 0.161 246 0.810 33.7

#events for (PH, no cure)
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Regulatory view on effect quantification

(European) health authorities: Emphasized many times that effect quantification in

label must not necessarily

be tied to hypothesis test,

provide inference with “significant”p-value.

Reject H0 using valid test.

Quantify effect using suitable summary statistics.
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Cure proportion model – effect quantification

Cure proportion model – no proportional hazards. Unweighted logrank...

...not most powerful test, but loss modest (see above).

...still valid test, i.e. protects type I error.

How to quantify effect?

Kaplan-Meier estimates provide entire information in data.

Desire to summarize effect in one number.

Hazard ratio from Cox regression and logrank test: if NPH, estimand and power

depend on censoring distribution: accrual, dropout, follow-up pattern!

Rufibach (2019): extended discussion in estimand context.



Cure proportion model – estimation

Numerous parametric and nonparametric estimates of relevant quantities:

Cantor and Shuster (1992), Maller and Zhou (1992), Maller and Zhou (1996),

Tsodikov et al. (2003).

Obvious nonparametric estimate of cure proportion p, with Ŝ Kaplan-Meier:

Ŝ(t0) for some t0 > 0.

Maller and Zhou (1992): Kaplan-Meier evaluated at largest observed time, censored

or event, consistently estimates p0 under “sufficient follow-up” condition

Tsodikov et al. (2003).

Finite sample: likely not use latest observed time to evaluate the Kaplan-Meier

estimate at. Rather trade-off bias to reduce variability of estimate.

Choose milestone t0 where clinically, cure seems very plausible.



What was done in MIRROS?

Violation of PH only very late.

Power loss modest.

MIRROS statistical analysis plan:

Logrank test.

Hazard ratio.

Survival probabilities at milestones 6m, 12m, . . .

(Notorious) median OS.
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What was NOT planned in MIRROS?

Rerun of simulations with observed recruitment ⇒ potential power impact.
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Outcome of MIRROS

Trial was negative.

Assumption on shape of S in treatment arm quite accurate.

Relative effect vs. control not big enough.
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Multistate model for PFS and OS

Event
free

PD

Death

λ01(t) λ12(t)

λ02(t)

Standard illness-death model without recovery:

Process X (t) ∈ {0, 1, 2}, t ≥ 0 models the state occupied at time t.

All patients in state 0 at time 0: P(X (0) = 0) = 1.

PFS: waiting time in initial state 0, PFS = inf{t : X (t) 6= 0}.

OS: time until reaching state 2, OS = inf{t : X (t) = 2}.



Multistate model formulation

Transition probabilities:

Full description of multistate model by only assuming existence of intensities

α01, α02 and α12.

Formulas, even for non-Markov case: Aalen et al. (2008).

Meller et al. (2019):

Formulas for Plm’s assuming Weibull transition hazards for time-inhomogeneous

Markov and semi-Markov.

Marginal distributions:

SPFS (t) = P(PFS > t) = P00(0, t),

SOS (t) = P(OS > t) = P00(0, t) + P01(0, t).

Joint distribution:

P(PFS ≤ u,OS ≤ v) = P(X (u) ∈ {1, 2},X (v) = 2)

= P(X (v) = 2|X (u) = 1) · P01(0, u) + P02(0, u).
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Multistate models to quantify effect when NPH?

NPH: focus on hypothesis testing or effect quantification?

If only one number should comprehensively quantify effect:

Assume effect is time-constant⇒ PH.

Average over time.

Pick a timepoint for comparison.

If >1 number “allowed” - which one to pick?

Effect transparent to, e.g., patient?

Proposal focus parameters to pre-specify interpretation

Piecewise exponential

hazard

estimation interval limits, hazard ratio

on each interval

�

Subgroupwise hazard estimation prevalence of each sub-

group, hazard ratio in each

group

�

Max-combo tests testing number of weight functions,

one hazard ratio

?

RMST both upper limit, effect size recalibration

needed
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(True) PFS and OS for hypothetical clinical trial
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(True) OS for hypothetical clinical trial
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(True) OS for hypothetical clinical trial
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Data was generated according to...

Transition Control arm Treatment arm

0→ 1 λc01 = log(2)/50 λt01 = λc01 · 1.1
0→ 2 λc02 = log(2)/70 λt02 = λc02 · 1.1
1→ 2 λc12 = log(2)/20 λt12 = λc12 · 0.4
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Multistate models for NPH?

Multistate models for NPH:

Potential option with straightforward (?) effect quantification.

Easy to plan trial via simulation.

PD → death transition non-randomized comparison!

Open questions - ongoing research:

How to define trial success? Combine transition-specific test statistics.

Interim analyses?

How to inform transition-specific quantities?
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Conclusions

Account for power loss and cutoff delay if you have cure proportions (or NPH).

NPH ⇒ large zoo of alternatives ⇒ assumption needed on shape of survival

functions ⇒ use simulations extensively!

Think about how to quantify effect.

Number of events: metric related to PH! Delayed separation ⇒ number of

events not necessarily sufficiently informative.

Power optimization ⇔ assumptions might also be off!

Mitigation against (large) family of alternatives appears meaningful.

Multistate models may offer way to plan trial and quantify effect if NPH.

Power optimization ⇔ pragmatism.
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Resources

MIRROS trial design:

Paper with Dominik Heinzmann and Annabelle Monnet: Rufibach et al. (2020).

Reproduce simulations and plan your own trial:

https://github.com/numbersman77/integratePhase2.git.

Multistate model for PFS and OS:

Paper with Matthias Meller and Jan Beyersmann: Meller et al. (2019).

https://github.com/numbersman77/integratePhase2.git


Thank you for your attention.

kaspar.rufibach@roche.com

http://www.kasparrufibach.ch

7 numbersman77

� numbersman77
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No new drug approved for treatment of AML in over 50 years! Bose et al. (2017)

THIS is unmet medical need!



Standard of care

No standard regimen for relapsed or refractory (R/R) AML. Breems et al. (2005)

No new drug approved for treatment of AML in over 50 years! Bose et al. (2017)

THIS is unmet medical need!



Idasanutlin

p53: Tumor suppressor, many mechanisms of anticancer function.

Mouse double minute 2 homolog (MDM2): Negative regulator of p53 tumor

suppressor.

Idasanutlin: binds to MDM2 ⇒ prevents p53 - MDM2 interaction ⇒ (re-)activation

of p53 ⇒ reinstalls anti-tumor capacity of p53.



Clinical development plan for Idasanutlin

Need for acceleration:

Very high unmet medical need in R/R AML.

Early phase results with Idasanutlin encouraging.

Competitive landscape and economic constraints: Lean program only way to

receive internal approval for pivotal trial.

Willingness to trade-off risk reduction from randomized P2 against increased

speed.



Skip or integrate Phase 2?

Assume we have successful P1.

Purpose of futility interim: optimize P(stopping @ interim | H0).

Hunsberger et al. (2009):

Integrate P2 into P3: futility interim based on intermediate endpoint.

Skip P2: futility interim based on P3 primary endpoint.

If trial

stops at futility interim: basically performed randomized P2.

passes futility interim: P3 pivotal trial well on its way.

Key advantage of setup: Decision to proceed to full P3 part based on randomized

comparison. Parmar et al. (2008)



Futility interim analysis

Mitigate risk if drug does not work (sufficiently).

Planned after 120 patients are recruited.

Why not use OS for interim decision?

53 (under H0) and 46 deaths (under H1) expected at interim. Substantial

uncertainty.

Cures have not happened yet at the interim.

Confounding by early (mainly safety-related) deaths.

Bottom line: interim is too early for OS to be meaningful endpoint.



Intermediate endpoint

Complete response:

Sufficiently associated with OS.

CR necessary for good OS / cure: Patient needs CR to have chance for cure, via

bridge-to-transplant.

Odds ratio as effect measure.

Futility interim is non-binding. Why do we need to model it at all?

How to choose interim boundary on CR?

Decision-makers want to be able to trade-off

False Positive = P(continue @ interim | H0)

vs.

False Negative = P(stop @ interim | H1).

If futility based on OS ⇒ conditional power.

If CR is intermediate endpoint: mechanistic simulation model.
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Mechanistic simulation model



Mechanistic simulation model

Connects CR to OS.

Need to inform all assumptions:

Quantity Control arm Treatment arm

Survival function of non-responders SN,1 SN,2

Probability to have CR pCR,1 pCR,2

Probability to be long-term responder | CR pL,1 pL,2

Survival function of short-term responders SS,1 SS,2

Survival function of long-term responders SL,1 SL,2

#patients recruited per month n1j n2j

Months of recruitment j = 1, . . . ,N

Total #patients recruited n1 =
∑N

j=1 n1j n2 =
∑N

j=1 n2j

Drop-out rate per month τ1 τ2

Align parameters such that mechanistic simulation model can reproduce sample size!

P(CR) control: 0.16. Assume OR = 2.5 to improve on this with treatment ⇒
P(CR tmt) = 0.323. P(longterm survivor) = 0.5. This gives cure proportions.



Operating characteristics of various interim boundaries



Operating characteristics of various interim boundaries

Sweet spot: odds ratio of 2,

False Positive = P(continue @ interim | no effect) ≈ 12%,

False Negative = P(stop @ interim | alternative assumed for powering) ≈ 30%.

Interim decision:

Based on independent data monitoring committee (iDMC) recommendation, i.e.

sponsor blinded,

non-binding,

included safety criterion (molecule class toxicity) and criteria for early deaths ⇒
OS component.



Power loss of adding futility interim

Can easily get that from simulations.

Targeted power: 85%.

Power taking into account futility interim: 63%!

Illustrates risk-appetite. Futility interim somehow becomes “informal efficacy

interim”.

Do we always compute the power loss when adding futility interims? Do we

increase number of events to account for it?

Who cares anyway ⇒ interim passed!
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Implementation features

A (industry) clinical trial is not a pre-specified static undertaking!

Not clear whether p53 mutant patients (≈15%) also benefit from Idasanutlin.

Still included, as evidence unclear and high unmet medical need.

But testing too late for randomization, i.e. could not stratify for p53 status.

Adds uncertainty to recruitment assumptions.

Decision-makers sceptical about interim gate based on CR only. Additionally

engineered EFS criterion (not discussed here).

Evolvement of gating criteria:

Date Milestone OR CR ≥ 2.5 OR CR ≥ 2 + OS HR ≤ 0.9 OS HR ≤ 0.8

EFS HR ≤ 1

22.04.2014 CHMP meeting x x

27.01.2015 FDA type C mtg x x

08.04.2015 LSPC team proposal x

09.04.2015 LSPC decision x

24.04.2015 CHMP BP x x x

27.08.2015 LSCP decision x x



Implementation features

A (industry) clinical trial is not a pre-specified static undertaking!

Biomarker development: typically in Phase 2! Recommendation on biomarker

development by iDMC.

Seamless designs in general: sponsor does not get to see data for a long time.

Unease for decision-makers.

No accrual suspension for interim ⇒ data cleaning and decision needs to come

fast.



Health authority feedback

FDA:

Preferred randomized P2.

Challenged lack of stratification on p53 mutation status.

Companion Diagnostic component with blinded P2 data ⇒ not clear how to

decide on development.

Challenged assumptions, asked for additional sensitivity analyses.

Concerns of early events driving interim analysis. OS not part of futility decision,

but early tox deaths are.

US sites only opened after passing the IA.

EMA:

Agreed to accelerated development due to high unmet need.

PH assumption discussed, support hazard ratio as appropriate effect measure.



Why two models?

We have two models:

Cure proportion model to derive sample size,

mechanistic simulation model to explore interim operating characteristics.

Why?

Reasons:

Futility interim analysis has no implication on type I error ⇒ independent of key

design characteristic.

Cure proportion model:

Simple,

depends on less assumptions than mechanistic model,

Robust model to plan sample size.

Mechanistic simulation model:

Interim setup has potential to be changed before or while study is running. Prefer not to have these

changes interfere with sample size.

Only used for (internal) decision-making via iDMC, no filing relevance⇒ can “afford” more modeling.



Advantages of multistate model

Multistate model:

Assumptions on X (t) induce properties of transition intensities, (joint)

probabilites, and thus PFS and OS.

No progression after death.

PFS = OS easily possible.

Estimation: No assumption about “in-/dependence” of PFS and OS.

Multistate = (most?) parsimonious model
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Correlation coefficient

Corr(PFS,OS) =
Cov(PFS,OS)√
Var(PFS)Var(OS)

=
IE(PFS ·OS)− IE(PFS) IE(OS)√

Var(PFS)Var(OS)
.

Mean, variance of PFS and OS: via survival functions.

IE(PFS ·OS): Use

P(PFS ·OS > t) = P(PFS >
√
t) +

∫
(0,
√
t]
P11(u, t/u; u)P(PFS > u−)α01(u) du.

Proof: manipulations using law of total probability.



Estimation and inference for Markov models

Parametric:

Plug parametric assumption in formulas for Plm(s, t), SPFS , SOS , Corr(PFS,OS).

Estimate parameters using Counting Process Likelihood, Andersen et al. (1993).

Product of patient-specific likelihood-contributions to each state transition.

Inference via delta method or bootstrap (results comparable).

Nonparametric:

Transition probabilities: Aalen-Johansen estimator, Aalen and Johansen (1978).

Plug in estimates into formulas for PFS,OS,Corr(PFS,OS).

Challenge: need to extrapolate tail beyond where we have data.

Inference via bootstrap.



Estimation and inference for Markov models

LFTM in Fleischer et al. (2009) and Li and Zhang (2015):

Group patients depending on their path from 0 to 1 or 2, or censored.

Likelihood uses assumption of independence of TTP, OSorig. Cannot tell from

(even uncensored!) data! Aalen (1987): “artificial problem”, as LFTM not needed,

see also Beyersmann et al. (2012).

Weber and Titman (2019):

Kendall’s τ , based on multistate, nonparametric, and copula models.

Use again LFTM for estimation.



Multistate model formulation

Transition probabilities:

Full description of multistate model by only assuming existence of intensities

α01, α02 and α12.

Formulas, even for non-Markov case: Aalen et al. (2008).

Meller et al. (2019):

Embed PFS and OS in multistate model framework,

formulas for Plm’s assuming Weibull transition hazards for time-inhomogeneous

Markov and semi-Markov (explicit),

inference via counting process likelihood,

P(PFS ≤ u,OS ≤ v) for X non-Markov (generic).

Allows derivation of any functional of PFS and OS.

Exemplary application: Pearson correlation.
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Multistate model for PFS and OS

Marginal distributions:

SPFS (t) = P(PFS > t) = P00(0, t),

SOS (t) = P(OS > t) = P00(0, t) + P01(0, t),

Joint distribution:

P(PFS ≤ u,OS ≤ v) = P(X (u) ∈ {1, 2},X (v) = 2)

= P(X (v) = 2|X (u) = 1) · P01(0, u) + P02(0, u).

X inhomogeneous Markov: P(X (v) = 2|X (u) = 1) = P12(u, v) independent of

progression time t1 ≤ u.

X non-Markov:

Integrate P12(u, v ; t1) over conditional distribution of all possible progression

times t1 ≤ u.

Formula tedious (see Meller et al. (2019)) ⇒ simulate in applications.
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R version and packages used to generate these slides:

R version: R version 4.0.5 (2021-03-31)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: MASS / mstate / prodlim / reporttools / xtable / biostatKR / survival
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