

Simulation-based optimization of adaptive designs

Pantelis Vlachos, Cytel Inc, Geneva Pantelis.Vlachos@Cytel.com

Agenda

- Motivation
- What is success in a clinical trial?
- What if priorities change?
- A case study
- Questions

How Do I Plan the Right Clinical Trial?

What is the right patient population to treat?

Is my medicine safe and effective?

How many patients per arm do we need?

Can I make a clear decision from the data?

Will my endpoint be reimbursed?

What is my benefit-risk profile?

Is my asset better than the competition?

How can we go faster?

What clinical trial design will get the right answers?

How can we accomplish these goals quickly and economically?

Need to first define success

- Team input:
 - Endpoints
 - Power
 - Budget
 - Design
 - Decision Criteria
 - Priorities

Calculating Probability of Success (for example in EAST)

Clinical Study Description and Fixed Design Requirements

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate the efficacy of Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Median OS

- Control median OS: 8 months
- Treatment effect: HR = 0.7
- Enrollment rate: 20 patients/month
- Sample Size: 451, Events: 331
- Power: 90%
- One-sided alpha: 2.5%

Design Operating Characteristics

Design: Survival Endpoint: Two-Sample Test - Parallel Design - Logrank Given Accrual Duration and Accrual Rates

Test Parameters							
Design ID	fixed0.7-20subjs						
Design Type	Superiority						
Number of Looks	1						
Test Type	1-Sided						
Specified a	0.025						
Power	0.90053						
Model Parameters							
$HR = \lambda_t / \lambda_c$							
Under H0	1						
Under H1	0.7						
Med. Surv. Time Control (m_)	8						
Med. Surv. Time Treatment (m_t)	11.429						
Var (Log HR)	Null						
Allocation Ratio (n _t /n _c)	1						
Accrual / Dropouts Paramet	ers						
Accrual Rate	20						
Dropout	No						

Variable Follow-Up Design: All subjects are followed until failure, drop out or end of study.

Sample sizes and events have been rounded.

Sample Size Information

Sample Size (n)	451
Treatment (n_t)	226
Control (n_c)	225
Events (s)	331
Treatment (s_t)	153
Control (s_c)	178
Information (I)	82.75

Accrual and Study Duration

Accrual Duration	22.55		
Max. Study Duration	31.145		

Critical Points

Critical Point -1.96

Adding uncertainly in Treatment effect

HR	Pr(HR)
0.60	10%
0.65	15%
0.70	30%
0.75	20%
0.80	15%
1.0	10%

Question: What is the study probability of success if we are only partially certain about the true HR being 0.7

Assurance Calculation

- $PoS = \sum_{x} P(reject H_0 | HR = x) P(HR = x)$
- In EAST: \bullet Design Type: Superiority ✓ Number of Looks: 1 ✓ Accrual / Dropouts Test Parameters Hazard Ratio (Optional) 0.025 Alternative Type I Error (α): O Hazard Ratio 0.7 $(\lambda_{\star}/\lambda_{c})$ 0.9 Power: \bigcirc Ratio of Medians (m,/m,) 1.429 331 No. of Events: Allocation Ratio: 1 Med.Surv.Time (n_{t}/n_{c}) Control Treatment: Alt. 8 11.429 Variance of Log Hazard Ratio ⊙ <u>N</u>ull O Alternative Assurance (Probability of Success) 0.7466 Prior Distribution for: Log Hazard Ratio (δ) \vee Distribution: User Specified-R \sim File Information for δ R File: C:\Users\Pantelis.vlachos\Desktop\ Browse... R Function: HR <u>V</u>iew...

An Alternative display – flat prior on HR – assurance = 0.68

Average Power

Prior used in EAST example – assurance = 0.74

Average Power

What if we are also uncertain about control mOS and Accrual Equal prior weights (1/54) – Flat prior – PoS = 0.69

Average Power

54 scenarios

Assuming informative prior HR and flat prior for Ctrl mOS, Accruals – PoS = 0.75

nmary				
Designs Scenarios	Financials	Output		
		Avg. Study Duration	30.984 Months	
Number of Interim Analyses	NA	Power	90.2%	
Events	330	Avg. Sample Size	451	
Sample Size	451	Avg. Number of Events	330	
Allocation Ratio	1	Avg. Accrual Duration	22.498 Months	
Test Statistic	Logrank	Observed HR	0.702	
Type 1 Error	0.025	Follow-up Time	10.117 Months	
Critical HR	0.806			

Expanding from Fixed to Adaptive Designs

Clinical Study Description and Fixed Design Requirements

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate the efficacy of Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Median OS

- Control median OS: 8 months
- Treatment effect: HR = 0.7
- Enrollment rate: 20 patients/month
- 1 Interim Analysis for Efficacy at either 40%, 50% or 60% IF
- Alpha-spending according to Gamma rule (-4,-2,1)
- Sample Size: 451, Events: 331
- Power: 90%
- One-sided alpha: 2.5%

Using flat prior on unknowns (HR, Ctrl mOS, Accrual) we now have 1 PoS calculation for each possible design

Score

Scenarios

Probability of Success of each design, flat priors

Fixed		GSD								
	IF	40		50			60			
	gamma	-4	-2	1	-4	-2	1	-4	-2	1
68.3%	Probabi lity of Success	68.8%	68.3%	66.3%	68.7%	68.1%	65.9%	68.7%	68.2%	66.0%

Probability of Success of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Fixed		GSD									
	IF	40		50			60				
	gamma	-4	-2	1	-4	-2	1	-4	-2	1	
68.3 %	Probability of Success (equal weights)	68.8%	68.3%	66.3%	68.7%	68.1%	65.9%	68.7%	68.2%	66.0%	
73.5 %	Probability of Success (unequal weights)	73.9%	73.4%	71.1%	73.8%	73.2%	70.7%	73.9%	73.2%	70.8%	

Recap

- We started with $PoS = \sum_{x} P(reject H_0 | HR = x) P(HR = x)$
- We defined a scenario as $\{HR = x, mOS_C = y, r_{acc} = z\}$ and
- arrived at $PoS = \sum_{x} P(reject H_0 | Scenario = s) P(Scenario = s)$

What if our priorities extend beyond maximizing PoS?

Models can be scored on performance criteria that reflect strategic goals

The score is a weighted function of performance criteria $w_{\mathcal{P}} (\mathcal{P}ower - \mathcal{P}_{min}) / (\mathcal{P}_{ma\chi} - \mathcal{P}_{min})$ $+ w_{\mathcal{T}} (\mathcal{T}_{ma\chi} - \mathcal{T}ime) / (\mathcal{T}_{ma\chi} - \mathcal{T}_{min})$ $+ w_{\mathcal{C}} (C_{ma\chi} - Cost) / (C_{ma\chi} - C_{min})$

Selecting general design-agnostic criteria enable broad strategic comparisons

Scoring is meant to surface areas of interest in the design map that merit further exploration

Robustness score of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Fixed						GSD					
	IF		40	50					60	60	
	gamma	-4	-2	1	-4	-2	1	-4	-2	1	
Robustness (equal weights)		44.9%	49.1%	54.2%	45.9%	48.9%	51.7%	44.8%	46.3%	47.5%	
Robu (unequa	stness I weights)	46.1%	50.6%	56.1%	47.5%	50.8%	54.0%	46.8%	48.6%	49.9%	

Score = 40%*Power + 30%*Duration + 30%*Sample Size

Find the Right Path for Your Study

TRIAL DESIGN SIMPLIFIED AND SCALED

ACCELERATE TO VALUE

Cytel

A case study in Multiple Myeloma

Multiple Myeloma Ph 3 Study

Reference Design	Inputs			
Planned Sample Size	800			
Planned Number of Events	227			
Allocation Ratio	1:1			
Targeted Treatment Effect (HR)	0.65			
Control Median Survival Time	20 months			
Type-1 error (1-sided)	0.025			
Target Power	85%			
Number of Interim Analyses	1			
Timing of Interim Analysis	70%			
Efficacy Stopping Rule	LD-OBF			
Futility Stopping Rule	LD-OBF			

<u>Р</u> і Рі	rimary Outcome: rogression Free Survival
<u>0</u>	ptimization Aim:
M m	aintain adequate power while inimizing time to market
<u>Q</u>	uestions of interest:
•	What is an optimal design that accounts for uncertainty on patient recruitment?
•	How will treatment effect variations impact the trial?
•	What study design would most optimize cost/sample size?

Cytel Simulation Plan Template

Design Options
Type 1 error: 1 sided 0.025
Allocation Ratios: 1:1
Number of subjects: 700:800:20
Number of events (if TTE): 130,162, 182, 210, <mark>227</mark> , 263
Statistical Design: GSD, GSD with SSR
Number of interim analyses: 1IA
Timing of interim analyses: 65%, 70%, 75%
Efficacy Stopping Rules/Alpha Spending Function: OBF
Futility Stopping Rules/Beta Spending Function: OBF, none
Promising Zone (if applicable): min = 0.3, max = 0.8, 0.9
Target Conditional Power (if applicable): 90%, 99%
Max Number of Subjects/Events (if applicable): 1.2, 1.3, 1.4

Population Scenarios

True underlying control response rates: 20m PFS (vary?)

True underlying treatment effects: 0.60, 0.65, 0.67

Dropout rate: 0

Enrollment Patterns

Enrollment Rates: (Number of periods, starting at time, average enrollment rate) 20pts/mo, 25pts/mo, 30pts/mo

Average Cost per Patient

\$100,000

Total number of design options in combination with scenarios (i.e., Models) = 4,104 designs x 9 scenarios = 36,936 models

Multiple Myeloma Study

~37 Million Simulated Trials

9 Scenarios

Cytel

Update weights on score and scenarios

eat Map Scatter Plot Table Box Plot				<u>م</u> ق	Favorite	Designs 3	6936 Models	Save
Score	▼ Scenarios ▼	Designs 🗸		Weights				
			Score					
Favorite								

Weights

Weights

Scoring Response Enrollment Weights must add up to 100%. Set Weight (%) Weight (%) Weight (%) Probability Dropout Control Probability Dropout Treatment Response Set 1 100 100 0 0 100 Weight (%) Time to Event Control Time to Event HR Weight (%) 20 100 0.6 33.33 0.65 33.33 0.67 33.33

 \otimes

Filter on Scenarios/Designs/Outputs of Interest

Heat Map Scatter Plot Table Box Plot Score	Scenarios 🗸 Designs 🗸		± क ≢ Filters	Favorite Designs 3 36936 Models Sa	ave			
		Score						
Favorite			F	Filters Designs Scenarios Outputs	1			
Filters				Avg Accrual Duration	16.559	16.559	0 33.466	33.466
Designs Scenarios Outputs				Avg Number of Events Power	.85	0.523	246.571	0.997
Avg Subjects Enrolled (Geography1)	× 25		× ¬	Avg Sample Size	415.114	415.114	787.244	787.244
Time to Event HR	× 0.65		X 🔻	Avg Study Duration	7.109	16.594 7.109	33.566	33.566
				Observed HR	0.582	0.582	0.695	0.695

Test Designs

Explore Test Designs Find Designs				Sim 2 - Modified (22-SEI	P-2022) -			
Current Scenario Reference Base	c	hange Scenario 🧷	Team Priorities 10% Power Sample Size Duration	90% n				
Solara Designs for Reference Scenario		Power	v					
Best Match Avg. Sample Size Power 583 85.4% 513 - 910 Shortest Duration Avg. Sample Size Power 464 63.7% 418 - 700	Best Match ♥ ••• Avg. Duration (Months) 23.3 20.7 - 28 Avg. Duration (Months) 18.5 16.7 - 21	▶ 600 - Price Start Solution Soluti		•				
Lowest Sample Size Avg. Sample Size 464 63.7% 418-700	Avg. Duration (Months) 18.5 16.7 - 21	500-	Gro	Apple 1 and 2 and	e Re-Estimation 🖤 Best Match	💽 Base		8
 Best Match Across Scenarios Avg. Sample Size 632 90.7% 543 - 1008 	Avg. Duration (Months) 25.2 21.7 - 30.3		Avg. D	Designs Scenarios Financials		Output Avg Study Duration	23.311 Months	^
Other Favorites Reference Design Avg. Sample Size Power 630 86.4% 589 - 800	••• Avg. Duration (Months) 25.1 23.6 - 28.7			Number of Interim Analysis Number of Events Sample Size Allocation Ratio 1-Sided Type 1 Error Test Statistics	1 (70%) 182 700 1 0.025 Logrank	Power Avg Sample Size Avg Number of Events Avg Dropouts Avg Accrual Duration Observed HR	85.4% 582.974 158.211 0 23.274 Months 0.64	
				Critical HR Efficacy Boundary Family: Spending Functions Futility Boundary Family: Spending Functions	0.743 LD (OF) LD (OF) (Non-Binding)	Avg Follow Up Time Power Promising	9.435 Months 0.84	

96.8

Explore Test Designs Find Designs

Sim 2 - Modified (22-SEP-2022) -

Filters Test Scenarios	7 Results of Base		Sort by: Bes	it ↓↑
POWER PROMISING (%)	Avg. Sample Size 560 (508 - 1,120)	Power 81.1%	Avg. Duration (Months) 22.3 (20.2 - 26.2)	
90 0 100	Avg. Sample Size 563 (486 - 840)	Power 81.6%	Avg. Duration (Months) 22.5 (19.4 - 26.8)	
POWER (%)	Avg. Sample Size 566 (488 - 1,008)	Power 81.8%	Avg. Duration (Months) 22.6 (19.5 - 26.8)	
Worse Trt Effect \$ 65	Avg. Sample Size 563 (508 - 1,120)	Power 81.1%	Avg. Duration (Months) 22.5 (20.2 - 26.8)	
MAX STUDY DURATION (MONTHS)	Avg. Sample Size 568 (487 - 936)	Power 82%	Avg. Duration (Months) 22.7 (19.4 - 26.7)	
Base	Avg. Sample Size 566 (468 - 864)	Power 81.3%	Avg. Duration (Months) 22.6 (18.7 - 26.9)	
POWER (%)	Avg. Sample Size 572 (469 - 960)	Power 81.1%	Avg. Duration (Months) 22.8 (18.7 - 27)	
Base 🗢				

80

Favorited Designs

← Favorite Designs

Summary

Only Show Differences	Best Match	Shortest Duration SSR ****	Reference Design		
Outputs					
Score	0.599	0	0.489		
Avg Study Duration	23.311 Months	20.226 Months	25.149 Months		
Power	85.4%	72.2%	86.4%		
Avg Sample Size	582.974	506.533	629.05		
Avg Number of Events	158.211	123.539	180.012		
Avg Accrual Duration	23.274 Months	20.186 Months	25.11 Months		
Observed HR	0.64	0.652	0.651		
Avg Follow Up Time	9.435 Months	8.39 Months	10.036 Months		
Power Promising	0.84	0.873	NA		
Study Design					
Statistical Design	Group Sequential with Sample Size Re- Estimation	Group Sequential with Sample Size Re- Estimation	Group Sequential		
Robustness Score	0.266	0.088	0.319		

73.8%

88.1%

Selected Scenario	
Time to Event Control	20
Time to Event HR	0.65
Probability Dropout Control	0
Probability Dropout Treatment	0
Response Scenario Name	Response Set 1
Enrollment Scenario Name	Enrollment Set 1
Likelihood	0.111

(i)

Change Scenario 🧷

View favorited designs under different scenarios

Weighted Probability of Winning

85.8%

Simulation-based optimization of adaptive designs

Pantelis Vlachos, Cytel Inc, Geneva Pantelis.Vlachos@Cytel.com

First In Class Digital Development Platform for Simulation Guided Clinical Trial Design

Solara

Your team's input

- Study endpoints, budget, ranges for sample size / enrollment / treatment effect, design options (e.g. fixed or adaptive)
- Team priorities (speed/cost/power)

Proprietary statistical design algorithms

- Trusted and validated for over 30 years
- Industry standard platform used by the FDA

Massive cloud compute power

• Parallel processing for near real-time design space generation

What it does:

- Based on team inputs, calculates study datasets for different designs and scenarios of interest
- Monte Carlo simulations scaled and applied across 1000s of permutations
- Helps teams visualize their options and select the best fit for their needs
- Routinely finds better designs than the manual process

