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Which hypothesis tests to use under NPH?

• Logrank/Cox test: loss in power, hazard ratio is not well
defined

• Weighted logrank test: gives larger weights to time-points
where hazards are expected to strongly differ between groups.
Fleming and Harrington (2011), Magirr and Burman (2019). Jiménez,

et al. (2020).

• Tailored tests based on Brownian motion approximations
Chauvel and O’Quigley (2014), Flandre and O’Quigley (2019)

• Tests based on differences of survival functions as the
two-Sample Tests of Cramér–von–Mises- and
Kolmogorov–Smirnov-Type Schumacher (1984)

• . . .
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Combining several tests to guarantee power in a range
of scenarios

If the onset and duration of the treatment effect is unknown
several hypothesis tests can be combined:

• Max-Combo test
Maximum statistics of several weighted log-rank tests

Tarone (1981), Lee (2007), Karrison (2016), Ristl et al. (2020)

• Combination of distance-from-origin test and
area-under-the-curve test

Chauvel and O’Quigley (2014)

• Combination of log-rank/Cox test and a permutation test for
the restricted mean survival time

Royston and Parmar (2016), Royston (2017), Royston et al. (2019)

• . . .
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Criticism of weighted tests

• General weighted tests, test the null hypothesis

H0 : S1(t) = S0(t) for all t.

• The modestly weighted test, tests the null hypothesis

H0 : S1(t) ≤ S0(t) for all t.

• In both cases, rejection of the null hypothesis only implies
that the curves are not equal but does not exclude crossing
survival curves.

• To maximize power, more weight is given to regions of the
survival curves, where an effect in the desired direction is
anticipated.

• Rejection does not imply that the novel treatment has a
superior survival.

Magirr and Burman (2019), Bartlett et al. (2020)
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Pembrolizumab vs Cetuximab in squamous cell
carcinoma of the head and neck (KEYNOTE-048)

Pembrolizumab alone (blue) vs Cetuximab w chemotherapy (red), total
population

Burtness et al. (2020)
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Treatment choice in case of crossing survival curves

• For crossing survival curves, which survival distribution is
more desirable?

• What is the weight patients and physicians give to different
regions of the survival curve?

• Which characteristics of the survival curves are relevant?

• Preference studies elicited the utilities of different survival
time distributions for patients and physicians

Shafrin et al. (2017), Hauber et al. (2020)
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Fixed or variable but potentially durable survival?

Shafrin et al. (2017)
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Proportion choosing Therapy B (with 20% long term survival)

Advanced stage melanoma (n = 81) and lung cancer (n = 84) patients
and oncologists (n = 91/96). Shafrin et al. (2017)
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Months of additional survival needed from therapy with
fixed survival to be indifferent to Therapy B

Shafrin et al. (2017)
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Hauber et al. (2020)
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200 advanced non-small cell lung cancer patients and 100 oncologists.
Hauber et al. (2020)

Medical University of Vienna 11/36



What are the relevant measures of treatment effects?

• Utility is based on trade-offs between short-term, expected
and long-term survival

• Studies show that patients appear to be more risk seeking
than physicians

• However, there is a large variability in the preferences within
patients (and within physicians).

• Also for regulators and payers several aspects of the survival
curves are relevant for decision making.

Medical University of Vienna 12/36



How to quantify effect sizes under NPH?

• Landmark analysis (e.g., Differences in 1-year, 2-year
survival).

• Differences in Restricted Mean Survival Time: measure of
average survival from time 0 to a specified time point. Irwin

(1949)

• Average Hazard Ratio: from time 0 to a specified time
point; interpretation akin to Mann-Whitney statistic.
Kalbfleisch & Prentice (1981), Brückner & Brannath (2017), Rauch

et al.(2018)

• Difference in Median Survival

• Parametric models (e.g. three-component cure rate model)
Kim and Gray (2012)

• Simultaneous confidence bands for difference of survival
functions

Parzen (1997)
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Proposal: Simultaneous test of multiple parameters
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Proposal: Simultaneous test of multiple parameters

• Quantify the effect size by

- 1-year survival difference, θ1

- 2-year survival difference, θ2

- Median survival difference, θ3

- Average hazard ratio, θ4

- Difference in restricted mean survival time θ5

- . . .

• Tests of the null hypotheses

Hj : θj = θ0,j , j = 1, . . . ,m

controlling the family wise error rate (FWER) at a level α.

• Simultaneous confidence intervals for all considered
parameters with overall coverage probability 1− α.
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Multiple testing & simultaneous confidence intervals

• Bonferroni adjustment is very conservative if the parameter
estimates are highly correlated.

• The Bonferroni test can be improved by accounting for the
correlation

• To derive the critical values we use a multivariate normal
approximation of the distribution of the estimates

(θ̂1, . . . , θ̂m)

based on the asymptotic covariance matrix.
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Derivation of the asymptotic covariance matrix

• The difference between observed Ni (t) and expected number
of events is a martingale

Mi (t) = Ni (t)−
∫ t

0
Yi (s)dΛi (s),

where Yi (t) is the number under risk and Λi (t) the
cumulative hazard function

Aalen (2010), Fleming and Harrington (1991)

• All considered estimators can be written as stochastic
integrals with dMi

θ̂k,i − θk,i = ak,i

∫ tk

0
Hk,i (s)

1

Yi (s)
dMi (s) + op(1/ni )

• ak,i is a constant or a parameter with a consistent estimate âk,i
• Hk,i is a predictable process with respect to Mi
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Application of multivariate central limit theorem

• True parameters are of the form θk = θk,1 − θk,0
• By the martingale representation, the estimators in each

group asymptotically follow a multivariate normal distribution.
Fleming and Harrington (1991)

• A consistent estimate for their covariance matrix Σi has
elements

ˆcov(θ̂k,i , θ̂k ′,i ) = âk,i âk ′,i

∑
s∈Di ,s≤tk∧tk′

Hk,i (s)Hk ′,i (s)
1

Y 2
i (s)

dNi (s),

where Di is the set of observed event times in group i .

• Hence, (θ̂1, . . . , θ̂m) can be approximated by a multivariate
normal distribution with mean (θ1, . . . , θm) and covariance
matrix Σ̂ = Σ̂0 + Σ̂1.
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Selected elements of the covariance matrix estimator

log Ŝi (t) log q̂γ,i log avrHR(L)

log Ŝi (t)
∑
s≤t

dNi (s)

Y 2
i

(s)

−1

q̂γ,i λ̂(q̂γ,i )

∑
s≤t∧q̂γ,i

dNi (s)

Y 2
i

(s)

−1
π̂i (L)

∑
s≤t∧L

(Ŝ0Ŝ1)(s)
dNi (s)

Y 2
i

(s)

log q̂γ,i
1

q̂2
γ,i
λ̂2(q̂γ,i )

∑
s≤q̂γ,i

dNi (s)

Y 2
i

(s)
1

q̂γ,i λ̂(q̂γ,i )π̂i (L)

∑
s≤q̂γ,i∧L

(Ŝ0Ŝ1)(s)
dNi (s)

Y 2
i

(s)

log avrHR(L) 1
π̂2
i

(L)

∑
s≤L

(Ŝ0Ŝ1)2(s)
dNi (s)

Y 2
i

(s)

log Ŝ(t′)
∑

s≤t∧t′

dNi (s)

Y 2
i

(s)

All sums are restricted to the set of observed event times s ∈ Di .
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Perturbation approach to estimate covariance matrix

A ”parametric bootstrap” type approach based on the
asymptotically normality of the independent increments of the
Nelson-Aalen estimator of cumulative hazards.

1. Generate random increments to generate ”perturbations” of
the observed cumulative hazard estimates in the treatment
and the control group and calculate the considered parameter
estimates

2. Repeat (1.) a large number of times

3. Calculate their empirical covariance matrix.

See Park and Wei (2003), Zhao et al. (2016) for other applications
of this approach.
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Testing procedure and confidence intervals

• For a vector θ̂ ∼ Nm(θ,Σ) of parameter estimates consider
the test statistics

Tj = (θ̂ − θ0)/
√
σ̂2
j ,

• Under H0 : θ = θ0, T (θ0) is multivariate normal distributed.

• Hj is rejected if Tj ≥ c , where c is chosen such that

P( max
i=1,...,m

Ti ≥ c) = α/2.

• A further improved can be a achieved with the closed testing
procedure.

Hothorn, Bretz and Westfall (2008)

• Simultaneous confidence intervals are given by θ̂j ±
√
σ̂2
j c
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Numerical example
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Numerical example

Parameter Estimate (SE) 95% CI p-value

1-year Survival -0.06 (0.05) u (-0.15,0.02) 0.15
a (-0.17,0.04) 0.31

2-year Survival 0.21 (0.05) u (0.12, 0.30) < 0.001
a (0.10,0.32) < 0.001

Median Survival 0.61 (0.23) u (0.16,1.06) 0.01
a (0.07,1.14) 0.02

RMST (2.5) 0.11 (0.08) u (-0.05,0.28) 0.18
a (-0.08,0.31) 0.36
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Simulation study

Considered parameters:

• Log ratio of survival probabilities for two or three time points

• Log ratio for one selected quantile

• Average hazard ratio over the maximal observation time span

Simulation settings

• 50,000 simulation runs

• Equal sample size per group of 75, 100, 150, 250
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Inference procedures in the simulation

• Test for individual Hj at multiple level 2.5%

• Simultaneous 95% confidence intervals using multivariate
normal approximation

• Asymptotic covariance matrix estimate

• Perturbation covariance matrix

• Bonferroni test and Bonferroni-adjusted 95% confidence
intervals
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Scenario 1: Delayed onset of treatment effect
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Treatment Control

• Modelled via lognormal distributions

• Two years recruitment, four years total study duration

• Further random censoring times distributed as lognormal(4,9).

• 56% vs. 72% of patients with event
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Scenario 2: Crossing survival, fast recruitment
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Treatment Control

• Modelled via Weibull distributions

• One year recruitment, three years total study duration

• 53% vs. 77% of patients with event
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Scenario 3: Crossing survival, slow recruitment
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Treatment Control

• Modelled via Weibull distributions

• Two years recruitment, three years total study duration

• 47% vs. 59% of patients with event
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Scenario 4: Proportional hazards
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Treatment Control

• Modelled via Exponential distributions

• One year recruitment, three years total study duration

• 61% vs. 70% of patients with event
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FWER and power to reject at least one Hj
Multivariate normal test (asymptotic Σ), Bonferroni test, Logrank test.
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Simultaneous Coverage Probability
Multivariate normal (asymptotic Σ), Bonferroni, Unadjusted.
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Simultaneous Coverage Probability (Perturbation)
Multivariate normal (perturbation approach), Bonferroni, Unadjusted.
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Properties of the multiple testing procedure

• If quantiles (as median survival) are tested, the perturbation
approach has better CI coverage and type I error rate control.
In general, better characteristics for log-transformed
parameters.

• Power depends on the specific scenario. For crossing survival
curves, the logrank test testing multiple parameters can have
larger power than the logrank test.

• Tests based on the multivariate normal approximation are
more powerful than Bonferroni adjustment.

• The tests will soon be available in the R-package nph
https://cran.r-project.org/web/packages/nph/
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Discussion

• There is no general purpose measure for differences in survival
distributions, especially if survival curves cross.

• Therefore, inference procedures addressing several parameters
simultaneously can be useful.

• In many settings, this comes at a loss in power (compared to
the logrank test) but provides additional information.

Medical University of Vienna 34/36



Literature I

[1] O. O. Aalen, P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding. History of applications of martingales in survival analysis.
arXiv preprint arXiv:1003.0188, 2010.

[2] J. W. Bartlett, T. P. Morris, M. J. Stensrud, R. M. Daniel, S. K. Vansteelandt, and C.-F. Burman. The hazards of period specific
and weighted hazard ratios. Statistics in Biopharmaceutical Research, 12(4):518, 2020.

[3] M. Brückner and W. Brannath. Sequential tests for non-proportional hazards data. Lifetime data analysis, 23(3):339–352, 2017.

[4] C. Chauvel and J. O’quigley. Tests for comparing estimated survival functions. Biometrika, 101(3):535–552, 2014.

[5] P. Flandre and J. O’Quigley. Comparing kaplan–meier curves with delayed treatment effects: applications in immunotherapy trials.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(4):915–939, 2019.

[6] T. R. Fleming and D. P. Harrington. Counting processes and survival analysis. John Wiley & Sons, 1991.

[7] B. Freidlin and E. L. Korn. Methods for accommodating nonproportional hazards in clinical trials: ready for the primary analysis?
Journal of Clinical Oncology, 37(35):3455, 2019.

[8] J. Irwin. The standard error of an estimate of expectation of life, with special reference to expectation of tumourless life in
experiments with mice. Epidemiology & Infection, 47(2):188–189, 1949.

[9] J. D. Kalbfleisch and R. L. Prentice. Estimation of the average hazard ratio. Biometrika, 68(1):105–112, 1981.

[10] T. G. Karrison et al. Versatile tests for comparing survival curves based on weighted log-rank statistics. Stata Journal,
16(3):678–690, 2016.

[11] H. T. Kim and R. Gray. Three-component cure rate model for nonproportional hazards alternative in the design of randomized
clinical trials. Clinical Trials, 9(2):155–163, 2012.

[12] E. L. Korn and B. Freidlin. Interim futility monitoring assessing immune therapies with a potentially delayed treatment effect.
Journal of Clinical Oncology, 36(23):2444–2449, 2018.

[13] H. Li, D. Han, Y. Hou, H. Chen, and Z. Chen. Statistical inference methods for two crossing survival curves: a comparison of
methods. PLoS One, 10(1), 2015.

[14] D. Magirr and C.-F. Burman. Modestly weighted logrank tests. Statistics in medicine, 38(20):3782–3790, 2019.

[15] Y. Park and L. Wei. Estimating subject-specific survival functions under the accelerated failure time model. Biometrika,
90(3):717–723, 2003.

Medical University of Vienna 35/36



Literature II

[16] M. Parzen, L. Wei, and Z. Ying. Simultaneous confidence intervals for the difference of two survival functions. Scandinavian Journal
of Statistics, 24(3):309–314, 1997.

[17] G. Rauch, W. Brannath, M. Brueckner, and M. Kieser. The average hazard ratio–a good effect measure for time-to-event endpoints
when the proportional hazard assumption is violated? Methods of information in medicine, 57(03):089–100, 2018.
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