

The Plan of Enrichment Designs for Dealing with High Placebo Response

Xiangmin Zhang
Division of Biometrics I/OB/OTS/CDER/FDA

Joint work with Dr. Yeh-Fong Chen (FDA) and Prof. Roy Tamura (University of South Florida)

PSI & DIA Virtual Journal Club, December 11, 2018

Disclaimer

This presentation reflects the views of the author and should not be construed to represent the views or policies of the U.S. Food and Drug Administration.

Outline

- Background
 - Enrichment designs for dealing with high placebo response
- Sample size/power optimization
- Numeric Study
 - Utility of sample size/power optimization
 - Implementing interim analysis
- Summary

Background

 In major depressive disorder, Schizophrenia, generalized anxiety disorder, functional bowel disorders, inflammatory bowel diseases ...

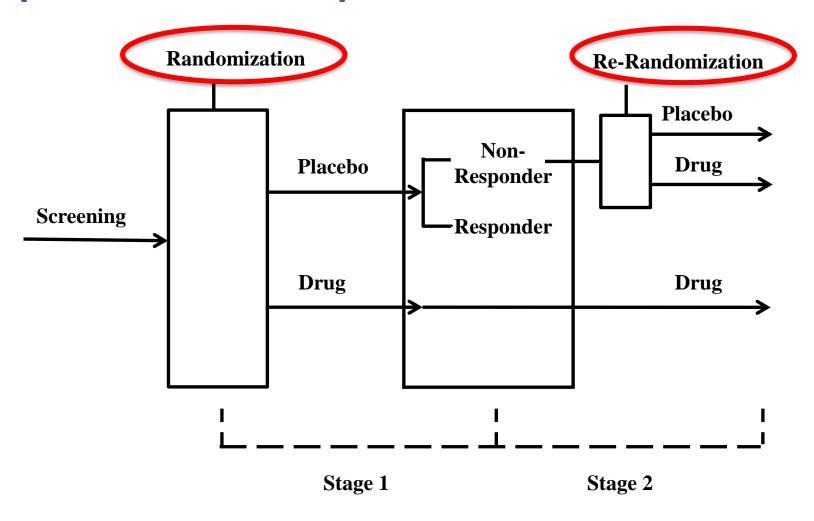
High placebo response

- interferes with the evaluation of drug efficacy
- compromises new treatment development

Sequential Parallel Design (SPD)

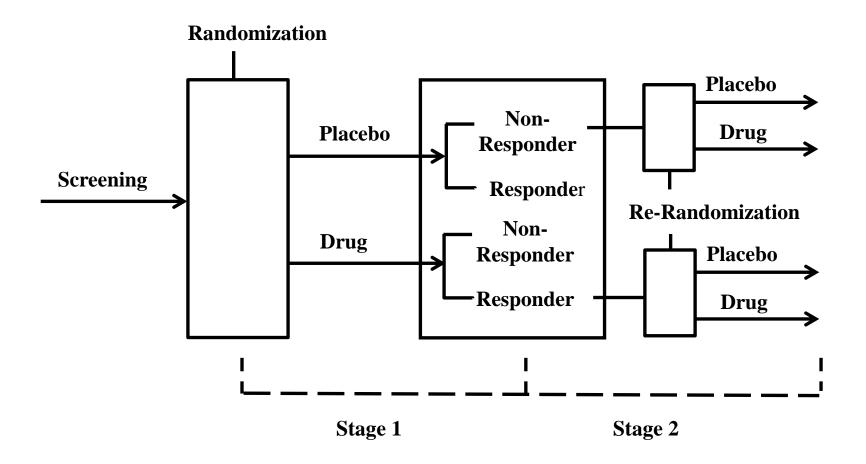
Fava et al. (2003)

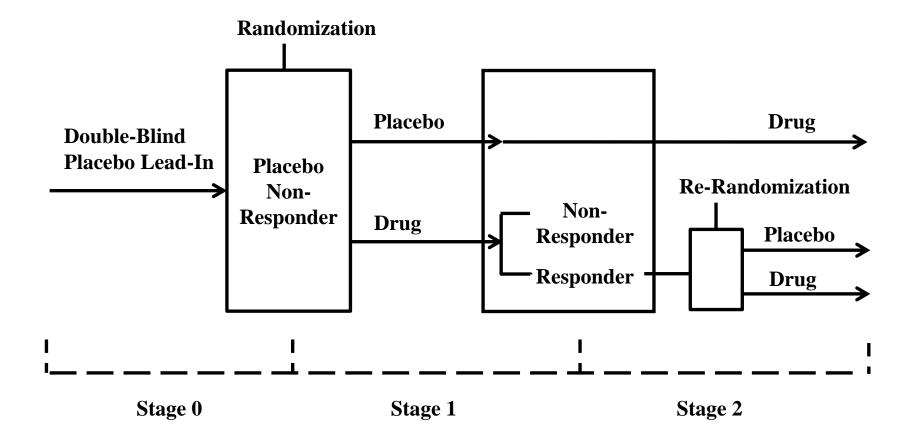
Two-way Enriched Design (TED)


Ivanova and Tamura (2011)

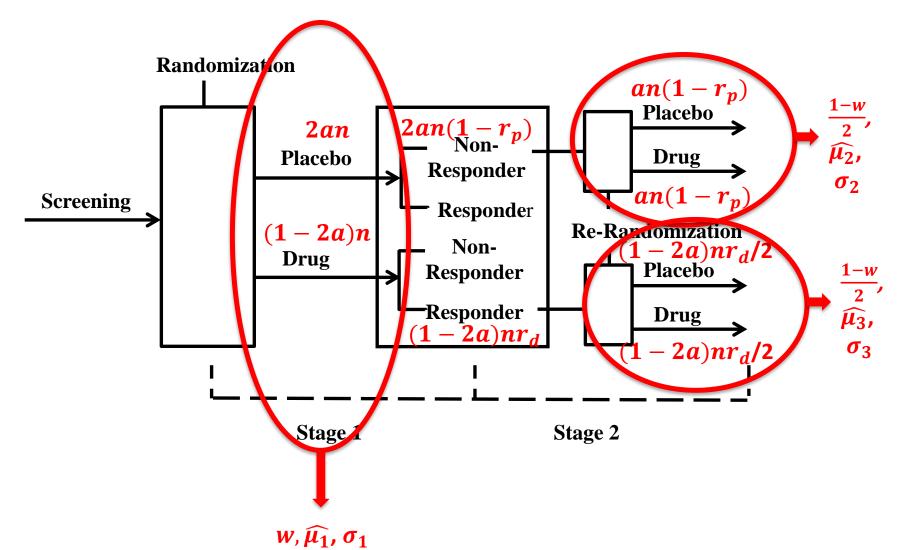
Sequential Enriched Design (SED)

Chen et al. (2014)


Sequential Parallel Design (SPD) (Fava et al. 2003)


Two-way Enriched Design (TED) (Ivanova and Tamura, 2011)

Sequential Enriched Design (SED) (Chen et al, 2014)


Notation

- n is the total sample size at the first randomization
- $a \in (0, 0.5]$ is the allocation ratio (e.g. 2a is the proportion of patients who are randomized to the placebo group at stage 1 of each design)
- $w \in (0,1)$ is the pre-specified weight for stage 1
- $\widehat{\mu_1}$ is the estimated treatment difference of stage 1
- $\widehat{\mu_2}$ and $\widehat{\mu_3}$ are the estimated treatment differences of stage 2
- σ_1 is the intra-patient standard deviation of stage 1
- σ_2 and σ_3 are the intra-patient standard deviations of stage 2
- r_p is the placebo group response rate
- r_d is the drug group response rate

Sample Size Calculation Illustration using the Two-way Enriched Design (TED)

Sample Size Calculation Illustration using the TED (Con't)

The test statistic is

$$Z_{TED} = \frac{w\widehat{\mu_1} + \left(\frac{1-w}{2}\right)\widehat{\mu_2} + \left(\frac{1-w}{2}\right)\widehat{\mu_3}}{\sqrt{w^2 \frac{\sigma_1^2}{2an(1-2a)} + \left(\frac{1-w}{2}\right)^2 \frac{2\sigma_2^2}{an(1-r_p)} + \left(\frac{1-w}{2}\right)^2 \frac{4\sigma_3^2}{n(1-2a)r_d}}}.$$

f(a, w)

The power is

$$1 - \beta = \Phi\left(\Phi^{-1}\left(1 - \frac{\alpha}{2}\right) - Z_{TED}\right)$$

• The sample size at randomization to achieve 100 $(1 - \beta)\%$ power and with significance level α is

$$n = \frac{\left[\Phi^{-1}(1-\beta) + \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right]^2 \left[w^2 \frac{\sigma_1^2}{2a(1-2a)} + \left(\frac{1-w}{2}\right)^2 \frac{2\sigma_2^2}{a\left(1-r_p\right)} + \left(\frac{1-w}{2}\right)^2 \frac{4\sigma_3^2}{(1-2a)r_d}\right]}{\left[w\widehat{\mu_1} + \left(\frac{1-w}{2}\right)\widehat{\mu_2} + \left(\frac{1-w}{2}\right)\widehat{\mu_3}\right]^2}.$$

To maximize the power is to minimize the test statistic

Optimal (a, w) pair

Design	Optimal weight <i>w</i>	Optimal allocation ratio $oldsymbol{a}$
SPD	$\frac{\widehat{\mu_1}}{\widehat{\mu_1} + \widehat{\mu_2} \frac{\sigma_1^2 (1 - r_p)}{4\sigma_2^2 (1 - 2a)}}$	$\frac{1}{2+2\sqrt{\frac{w^2\sigma_1^2(1-r_p)}{w^2\sigma_1^2(1-r_p)+4\sigma_2^2(1-w)^2}}$
TED	$\frac{\widehat{\mu_{1}}}{\widehat{\mu_{1}} + (\widehat{\mu_{2}} + \widehat{\mu_{3}}) \frac{\sigma_{1}^{2}(1 - r_{p})r_{d}}{2\sigma_{2}^{2}(1 - 2a)r_{d} + 4\sigma_{3}^{2}a(1 - r_{p})}$	$ \frac{1}{2+2\sqrt{\frac{w^2\sigma_1^2+(1-w)^2\frac{\sigma_3^2}{r_d}}{w^2\sigma_1^2+(1-w)^2\frac{\sigma_2^2}{1-r_p}}}} $
SED	$\frac{\widehat{\mu_{1*}}}{\widehat{\mu_{1*}} + \widehat{\mu_{2*}} \frac{\sigma_{1*}^2 r_{d*}}{8\sigma_{2*}^2 a}}$	$\frac{1}{2+2\sqrt{\frac{w^2\sigma_{1*}^2r_{d*}+4\sigma_{2*}^2(1-w)^2}{w^2\sigma_{1*}^2r_{d*}}}}$

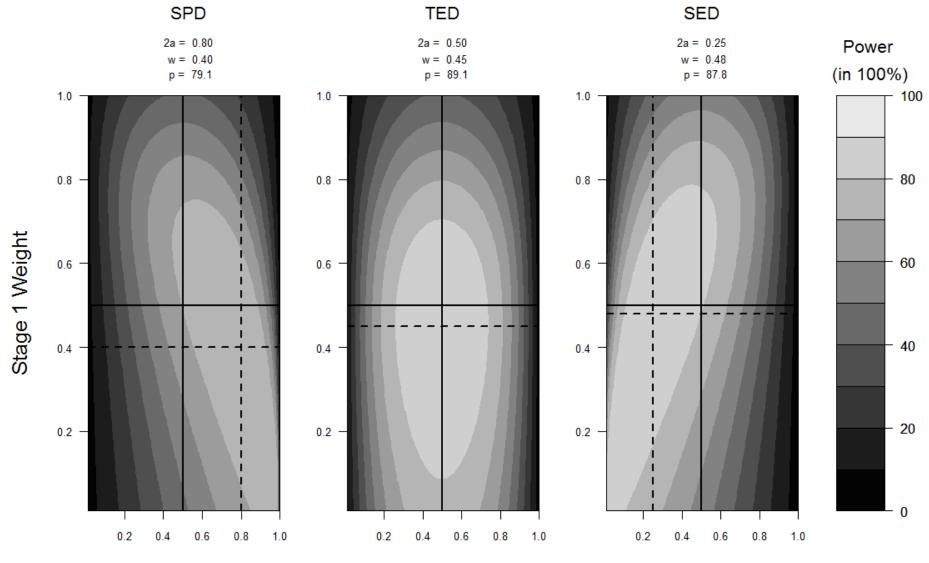
In computational application, we can use iterative methods

Optimal w when a = 0.25

Design	Optimal weight $\widehat{m{w}}$
SPD	$\frac{\widehat{\mu_1}}{\widehat{\mu_1} + \widehat{\mu_2} \frac{\sigma_1^2 (1 - r_p)}{2\sigma_2^2}}$
TED	$\frac{\widehat{\mu_{1}}}{\widehat{\mu_{1}} + (\widehat{\mu_{2}} + \widehat{\mu_{3}}) \frac{\sigma_{1}^{2}(1 - r_{p})r_{d}}{\sigma_{2}^{2}r_{d} + \sigma_{3}^{2}(1 - r_{p})}}$
SED	$\frac{\widehat{\mu_{1*}}}{\widehat{\mu_{1*}} + \widehat{\mu_{2*}} \frac{\sigma_{1*}^2 r_{d*}}{2\sigma_{2*}^2}}$

Example: For SPD, $\sigma_1 = \sigma_2$, $\widehat{\mu_2} = 1.5 \, \widehat{\mu_1}$, $w = \frac{4}{7 - 3r_p} \in \left(\frac{4}{7}, 1\right)$.

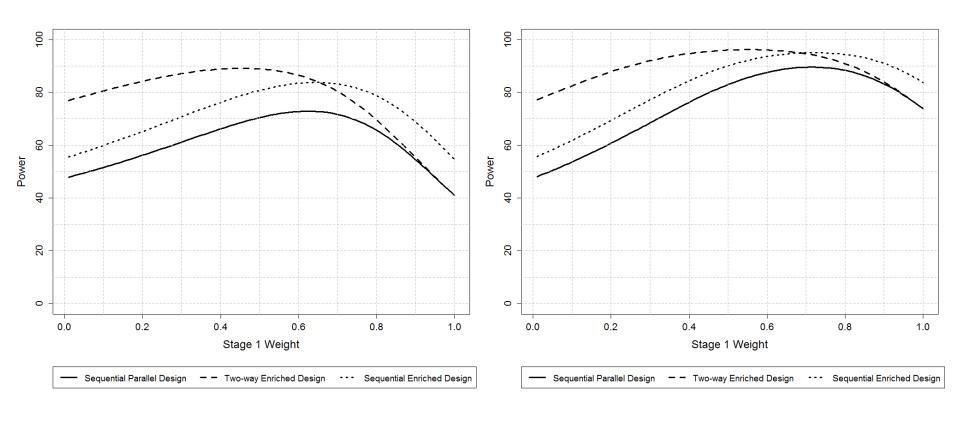
Settings for Numerical Illustration



	Stage 1 μ	Stage 2 μ	Placebo Non- response Rate	Drug Response Rate
Setting 1				
SPD	-1	-2	60%	NA
TED	-1	-2	60%	60%
SED	-1.2	-2.2	NA	60%
Setting 2				
SPD	-1.5	-2	60%	NA
TED	-1.5	-2	60%	60%
SED	-1.7	-2.2	NA	60%

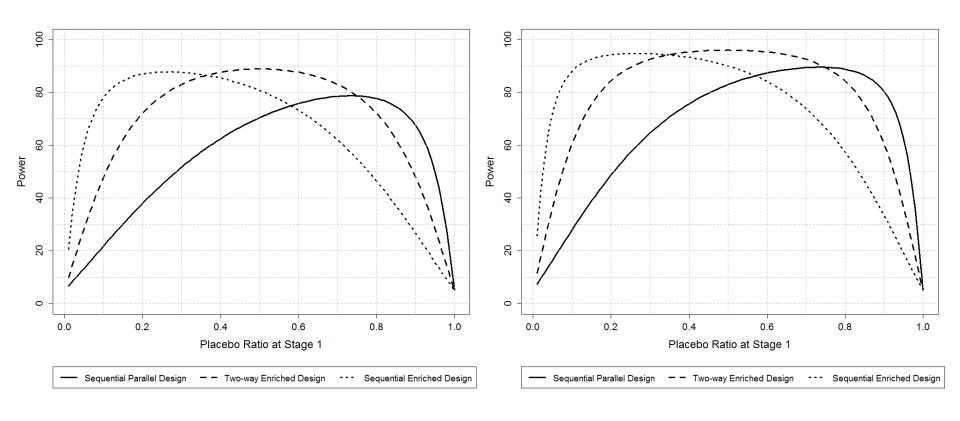
Stage-wise standard deviation = 5

Contour Plots under Setting 1



Placebo Ratio at Stage 1

N = 300



Setting 1 Setting 2

Setting 1 Setting 2

Sample Size Saved by Optimization

Sample sizes required at the first randomization to achieve 90% power under fixed (2a, w) = (0.5, 0.5) vs. optimal (a, w):

		Fixed (a,w)		Optimal (a	Sample size		
Setting Design		Sample Size at Randomization	2 <i>a</i>	w	Sample Size at Randomization	Reduction due to Optimization (%)	
	SPD	506	0.80	0.40	411	18.77	
1	TED	312	0.50	0.45	310	0.64	
	SED	394	0.24	0.48	323	18.02	
	SPD	372	0.64	0.65	292	21.51	
2	TED	229	0.50	0.56	226	1.31	
	SED	271	0.38	0.66	233	14.02	

Simulation with Interim Analysis: Settings

Drug Response	True Drug Responder	True Drug Non- Responder		Placebo Response	True Drug Responder	True Drug Non- Responder
True Placebo Responder	- 8	- 7	<u> </u>	True Placebo Responder	- 7	- 7
True Placebo Non-Responder	- 8	- 7	True Placebo Non-Responde		- 5	- 5
Treatment Effect	True Drug Responder	True Drug Non- Responder		Proportion	True Drug Responder	True Drug Non- Responder
True Placebo Responder	-1	0	True Placebo Responder		0.1	0.1
True Placebo Non-Responder	-3	- 2		True Placebo Non-Responder	0.7	0.1

Overall treatment difference μ = - 2.4

Settings (cont.)

- The baseline is normally distributed with mean 25 and standard deviation 3
- The noise standard deviation of change from baseline is 8 for each stage
- 20% is the threshold for responders or non-responders
- Weight w is fixed at 0.7
- 50% information time
- O'Brien-Fleming bound

Selected Simulation Results

Power and Type I error rate are not affected by the implementation of interim analysis

	Without Inte	erim	With Interim, OBF, 50% Information Time			
Design	Planned Sample Size at Randomization	Bias*	Expected Sample Size at Randomization	Bias*	Sample Size Reduction due to Interim (%)	
CDD	200	0.58	190.1	0.45	5.0	
SPD	400	0.58	348.8	0.41	12.8	
TED	200	0.59	185.9	0.45	7.1	
TED	400	0.59	325.2	0.41	18.7	
SED	200	0.52	187.9	0.38	6.0	
SED	400	0.51	335.3	0.34	16.2	

^{*} Bias = estimated combined treatment effect - target treatment effect (i.e. treatment

Summary

- We provided optimization formulae for (a, w) pair for SPD, TED, and SED.
- Sample size can be saved using optimized (a, w) values.
- To optimize power, more patients need to be assigned to the placebo group for the SPD; more patients need to be assigned to the drug group for the SED.
- The weight for achieving the optimal power depends on the assumed parameter values. It should be prespecified.
- Implementing interim analysis for an novel enrichment design has benefits.

Reference

- Chen YF, Yang Y, Hung HJ, and Wang SJ. Evaluation of performance of some enrichment designs dealing with high placebo response in psychiatric clinical trials. *Contemporary clinical trials* 2011; **32**(4): 592-604.
- Chen YF, Zhang X., Tamura RN, Chen CM. A sequential enriched design for target patient population in psychiatric clinical trials. *Statistics in Medicine* 2014; **33**(17): 2953–2967.
- Fava M, Evins AE, Dorer DJ, Schoenfeld DA. The problem of the placebo response in clinical trials for psychiatric disorders: culprits, possible remedies, and a novel study design approach. *Psychotherapy and psychosomatics* 2003; **72**(3), 115-127.
- Ivanova A, Tamura RN. A two-way enriched clinical trial design: combining advantages of placebo lead-in and randomized withdrawal. *Statistical methods in medical research* 2011.
- Zhang X, Chen YF and Tamura R. The plan of enrichment designs for dealing with high placebo response. *Pharmaceutical statistics* 2018.
 17(1):25-37.

Thank You!