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The Emax model is now a well-established technique for assessing the dose response relationship for a new drug 

during early phase clinical trials. Through Emax modelling it is possible to estimate the maximal treatment effect, 

the dose which produces 50% of the maximal effect and the placebo effect. The 3-Parameter Emax model has the 

following equation: 

 

 
Where E0 is the effect in the absence of treatment, ED50 is the dose which gives 50% of the maximum effect and 

Emax is the maximum effect.  These are displayed graphically in figure 1. 

Bayesian analysis enables us to incorporate historical data into our statistical models. The availability of historical 

data gives justification for a reduced sample size. In early phase clinical studies this is often not applicable to active 

treatment groups, however it can be applied to the control group, especially in disease areas where a number of 

clinical trials have already been performed. This is crucial to the Emax model, and specifically the E0 term.  
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   Figure 1: The 3-Parameter Emax curve 
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  Analysis   Programming 

Before starting the analysis the desired model should be fully 
parameterised. E0 is not the only parameter which should be assigned a 
prior distribution. Emax should be given a normal prior, precision (1/
variance) a half-normal prior and ED50 a Beta prior. The coefficients for any 
additional effects should also be assigned relevant priors. Unless validated 
prior information is available these prior distributions should be non-
informative. Therefore  high standard deviations for normal distributions 
and a and b values of ≤1 for Beta distributions. 

To ensure the model coefficients are being drawn from a converged 
distribution it is recommended to discard an initial proportion of the 
simulations. The number of simulations to be run should be specified as well 
as any thinning rate. Starting values and a seed number will fix the point of 
the initial simulation and allow replicable results. The seed number can be 
randomly generated independently. In general starting values should be 
logical, for example the minimum response for E0, the maximum response 
for Emax. 

Model suitability can be assessed by examining diagnostic plots. Trace plots 
of the simulation means should be a random scatter, representative of white 
noise. Low autocorrelations indicate a smooth distribution. High 
autocorrelations are symptomatic of ’clumps’ within your simulated samples 
and should be removed through thinning. The shape of the posterior density 
curve should be representative of the expected distribution.   

Programming can be performed in WinBUGS or R, however we have used the MCMC procedure in SAS. The following 
is example code from an Emax model with two additional continuous covariates.  

 

proc mcmc data=data1 nbi=10000 nmc=5000000 thin=50 seed=10524  

          monitor=(e0 ed50 emax sigma coeff1 coeff2  

                   dose0 dose5 dose15 dose50 dose100  

                   diff5 diff15 diff50 diff100)  

          stats(alpha=(0.1)) plots(smooth)=all ; 

 

  parms precision x1;  

  parms e0        x2; 

  parms ued50     x3; 

  parms emax      x4; 

  parms coeff1    x5; 

  parms coeff2    x6; 

 

  prior precision ~ normal(0, sd=100,lower=0); 

  prior e0        ~ normal(0, sd=0.5); 

  prior ued50     ~ beta(a=0.5, b=0.5); 

  prior emax      ~ normal(0, sd=100); 

  prior coeff1    ~ normal(0, sd=100); 

  prior coeff2    ~ normal(0, sd=100); 

 

  beginnodata; 

    diff5=((e0 + ((emax*5) / (5+ed50)))) -(e0); 

    diff15=((e0 + ((emax*15) / (15+ed50)))) - (e0); 

    diff50=((e0 + ((emax*50) / (50+ed50)))) -(e0); 

    diff100=((e0 + ((emax*100) / (100+ed50)))) - (e0); 

 

   sigma = sqrt(1/precision); 

   ed50 = ued50*300; 

  endnodata; 

 

  mu = e0 + (emax*dose) / (dose+ed50) + coeff1*parm1 coeff2*parm2; 

 

  model response ~ normal(mu,sd=sigma); 

run;  
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  Discussion and conclusions 

Introducing Bayesian inference to the Emax model gives us the opportunity to achieve more reliable responses from our dose-response studies with less data. Through SAS proc MCMC, not only can 

we calculate the terms of the Emax model but we can also adjust for any additional effects and compare the posterior samples to establish individual dose effects and differences. Therefore this 

approach can give comprehensive insight into drug efficacy as well as identifying the most effective dose.  Detailed specifications for model parameterisation is key, as with any Bayesian analysis 

there is more than one possible result. Therefore early thinking and anticipating the potential pitfalls will lead to a more efficient analysis.  

In this poster we have only discussed the 3-parameter Emax model, however adaptation of this approach to the 4-parameter is possible. The 4-parameter Emax model introduces a slope factor which  

allows for greater flexibility over the shape of the Emax curve.      

   Figure 2: Example of ideal diagnostic  plots 



Kaplan Meier Imputation 
Kaplan Meier imputation is a multiple imputation technique that uses 
KM curves to define the imputation distribution. Bootstrapping is 
used to derive a separate data set for each imputation. This 
provides a more accurate estimation of the variance after 
imputation. KM curves are then created for each treatment within 
each bootstrapped data. For each censored observation, the 
appropriate KM curve is then rebased to a probability of 1 at the 
time of censoring. A random draw is then taken from a standard 
uniform distribution and used to impute an event time using the 
following rules: The time corresponding to that probability from the 
KM curve is taken as the imputed event time. If the probability is 
lower than any in the KM curve, then the imputation is a censoring 
at the time of the last event. For censored observations after the last 
event in the KM curve, no imputation is performed. 
 
This method has been previously shown to reproduce the KM 
estimator (1), To test our implementation of the method, we 
compared the results from the imputed and original data (see Table 
1 for results) using the Cox Proportional Hazards model and the Log 
Rank Test. 
 
The statistics can be seen to be very similar between the two data 
sets. The KM curves for the imputed data (not shown)  also closely 
follow those from the original data. The one difference is the log 
rank statistic (although the corresponding p-values are comparable). 
This is due to both the statistic itself and its variance being directly 
dependent upon the number of events. Further work has 
demonstrated that if a complete data set is randomly censored and 
then imputed, the log rank statistics for the complete data and the 
imputed data are very similar. 

Introduction 
Censoring At Random (CAR) is a necessary assumption in most 
common time-to-event (TTE) analysis techniques used for clinical 
trials, including Kaplan Meier analysis, Cox regression and the log-
rank test. However, it is also a strong assumption that is not likely to 
be that realistic in many cases.  
 
In this poster, we present a set of three related sensitivity analyses 
around the assumption of CAR in TTE data. These approaches are 
based around Kaplan Meier (KM) imputation, a method analogous 
to that of multiple imputation in longitudinal data. In each method, 
adjustments are made to the imputation procedure to reflect 
assumptions about the likely or assumed behaviour of patients after 
censoring.  
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Delta Adjustment 
To test the robustness of conclusions to the CAR assumption, delta 
adjustment may be used (2,3). This is the use of a fixed penalty, δ, 
to reduce the expected time to an event after censoring for the 
active treatment arm. To implement this with KM imputation, all 
probabilities for the active treatment curve are adjusted to the power 
of δ. The CAR case corresponds to δ=1, while δ>1 is penalising and 
δ<1 is beneficial. Figure 1 shows the impact of applying different 
values of delta to a KM curve. 
 
For the example data, a sensitivity analysis was performed with a 
value of delta of 3 for treatment A, corresponding to considerably 
higher probabilities of events occurring soon after censoring in the 
active arm. The resulting KM curves may be found in Figure 2, with 
summary statistics in Table 1. 
 
Despite this high degree of penalisation of censoring in the active 
treatment, the resulting analysis still shows statistical significance. 

Pattern Mixture Modelling 
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Discussion and Conclusions 
This poster has demonstrated methods for performing sensitivity 
analyses for the censoring at random (CAR) assumption in time-to-
event analysis. These methods may also be used to address 
estimands that account for treatment discontinuation or treatment 
switching. 
 
A key strength of these methods is they only require simple and 
transparent assumptions that can be easily translated to and from 
clinical understanding. They also allow for a more realistic middle-
ground between accepting CAR and  imputing censorings as events 
on the day of censoring. 
 
For the example data, all sensitivity analyses produced 2-sided p-
values considerably below 0.05, and consequently the original 
conclusion of significance can be considered robust to deviations 
from the assumption of CAR. This robustness is caused by the 
extremely significant p-value from the original analysis and is 
despite the large deviations observed in the sensitivity analyses. 
 
All methods have been implemented using standard SAS code and 
it is hoped to make the programs available in the near future.  
 References 

Figure 1 Kaplan Meier curves derived from the active treatment arm (A) of the 
example data that are used for imputation of censored data using the delta 
adjustment method. Curves are shown for δ = 0.5, 1, 3 and 10. 

Reference-based Imputation 
A novel method of testing the robustness of the CAR assumption is 
reference-based imputation whereby patients who discontinue from 
the active treatment are assumed to behave like the control upon 
dropout. Where the active treatment is more effective than the 
reference, the impact of this is usually to increase the event rate for 
the active treatment arm.  
 
To implement this by KM imputation, the KM curve of the reference 
arm is used to impute censored observations from both the active 
and reference arms. The reference arm is therefore imputed 
normally. As an example, Figure 3 shows the effective survival 
function used to impute the active treatment censoring at day 207. A 
similar curve could also be constructed for each other active 
treatment censoring. 
 
KM curves for imputed data can be found in Figure 4, and the 
summary statistics for this approach are shown in Table 1.  

 
Data 

 
Original Data 

Unadjusted 
KM Imputed 

Data 

Delta = 3 
Adjusted 

Imputation 

Reference-
Based 

Imputation 

Pattern 
Mixture 

Imputation 

Treatment A 
Median 

340 days 340 days  330 days  330 days  318 days 

Treatment R 
Median 

210 days 210 days 210 days 210 days 209 days 

Hazard Ratio - 
Cox (95% CI) 

0.571  
(0.428, 0.762) 

0.559  
(0.414, 
0.755) 

 0.628  
(0.467, 
0.844) 

 0.599  
(0.451, 0.797) 

 0.601 
(0.453, 0.795) 

t-score – Cox 
Log(HR)  (p-
value) 

-3.81  
(0.0001) 

-3.80  
(0.0002) 

 -3.09 
(0.0021) 

-3.53 
(0.0004)  

-3.57  
(0.0004)  

Log Rank 
Statistic (95% 
CI) 

-23.1  
(-34.9, -11.4) 

-35.3  
(-52.9,-17.7) 

 -29.5  
(-47.8, -11.3) 

-31.8 
(-49.1, -14.5)  

-32.0  
(-49.2, -14.8) 

t-score – log-
rank test (p-
value) 

-3.86  
(0.0001) 

-3.95  
(<0.0001) 

 -3.17  
(0.0016) 

-3.61 
(0.0003)  

 -3.65  
(0.0003) 

If censoring at random is assumed not to hold, then the reasons for 
censoring may provide information about the likely time to event. 
Consequently, it may be desirable to reflect this in a ‘realistic’ 
sensitivity analysis. This is achievable using KM imputation by 
borrowing the concept of pattern mixture modelling from longitudinal 
data analysis.  
 
Patients may be assigned to patterns according to e.g. reasons for 
discontinuation. Each pattern may then be imputed using different 
rules to reflect likely post-discontinuation behaviour. These rules are 
implemented by allowing each treatment within a pattern to be 
imputed using the KM curve of either treatment, and with a specified 
delta adjustment. For our example data, we provide a complicated 
analysis based upon 4 patterns, with patterns and rules defined in 
Table 2. 
 
For pattern 1, patients starting a new therapy, the active treatment is 
reference-imputed with an additional penalty as censoring may 
reflect their deteriorating health and they may start an inferior 
treatment. The reference treatment is imputed normally. Pattern 2 is 
imputed assuming censoring at random as there is no indication of 
worsening health being associated with their censoring. Patterns 3 
and 4 are imputed with penalties to reflect that these patients were 
known to progress/die but were censored as it was not possible to 
obtain an accurate time of progression/death. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
KM curves for the imputed data may be seen in Figure 5 and 
summary statistics in Table 1. Unlike the previous method, both 
curves show systematic deviation from the unadjusted imputation 
curves towards worsening PFS. 

Pattern 
Number 

(patients) 

Censoring 
Description 

Treatment A 
Imputation 

Curve 

Treatment A 
Imputation 

Delta 

Treatment R 
Imputation 

Curve 

Treatment R 
Imputation 

Delta 

1 (61) New therapy Treatment R 2 Treatment R 1 

2 (30) No progression 
& censored 

Treatment A 1 Treatment R 1 

3 (6 ) No data before 
progression 

Treatment A 5 Treatment R 5 

4 (2) Missing data 
then death 

Treatment A 3 Treatment R 2 

Figure 2 Kaplan Meier curves for the example data imputed using unadjusted and 
delta adjustment (δ=3) Kaplan Meier Imputation methods. The two curves for treatment 
R are identical and overlay. 

Figure 3 The Kaplan Meier imputation curve for a censoring in the active treatment 
arm at day 207 (vertical line). The reference and active treatment KM curves are 
shown for comparison. 

Figure 4 Kaplan Meier curves for the example data imputed using unadjusted 
(Censoring At Random, CAR) and reference-based Kaplan Meier Imputation methods. 

Table 1 Summary statistics for the example data set using all methods described.  

Table 2 Summary of reason for dropout patterns and the associated imputation rules 
for an example scheme. Curve columns give the treatment curve that is to be used for 
imputation. Delta columns give the value of delta to be applied to each curve. 

Figure 5 Kaplan Meier curves for the example data imputed using unadjusted and 
pattern mixture Kaplan Meier Imputation methods. 

Throughout, a set of Progression Free Survival (PFS) oncology 
data is used to demonstrate the real-world application of these 
methods. This comprises 345 patients with 99 censorings (28.7%) 
across two treatments; active Treatment A and reference Treatment 
R. Analysis is presented based upon both the Cox Proportional 
Hazards model and the Log Rank Test. Results are given for an 
unstratified analysis. In all cases, 100 imputations are performed. 

1) Taylor J M G., Murray S, Hsu C; Statistics and Probability Letters 2002, 
58 221-232: “Survival Estimation and Testing via Multiple Imputation”. 

2) O’ Kelly M, Lipkovich I; 2014 PSI Conference presentation: “Using 
Multiple Imputation and Delta Adjustment to Implement Sensitivity 
Analyses for Time-to-Event Data”.  

3) Zhao Y, Herring A H, Zhou H, Ali M W, Koch G W: J Biopharm. Stat., 
24(2):229–253, 2014. “A multiple imputation method for sensitivity 
analyses of time-to-event data with possibly informative censoring.” 
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The cost of drug development for pharmaceutical companies continues to 

increase. In a world where it is harder to find compounds and get them 

marketed, it is increasingly important to decrease the cost of drug 

development but also to reduce the duration between when a compound 

is discovered to the time it is marketed. The aim is to bring better and 

safer treatment to patients. What are pharmaceutical companies doing to 

better manage their clinical trials?  

Some very innovative companies involved the use of statistics to try and  

  Introduction 

  

Dear Statistician ,  

Can you please provide 
us with the date and a 
confidence interval 
when the Interim 
Analysis for the MAGIC 
study will happen .  

PS: can we have this 
information at your 
earliest convenience. 

Upper Management 
Team 

CONTACT THE STATISTICIAN! I 
NEED TO KNOW WHEN WE WILL 
GET RESULTS FROM THE INTERIM 
ANALYSIS OF THE MAGIC STUDY.  

NEWSFLASH: STATISTICS INVOLVED IN PLANNING OF END OF RECRUITMENT AND INTERIM ANALYSES!  

  Are Statisticians also Wizards? 

 predict when the study recruitment will be completed or when the 

Interim Analysis will occur.  

Using simulation in SAS and known distributions for recruitment (Poisson 

distribution), for survival data types (exponential, log normal or Weibull 

distribution) with maybe just a sprinkling of Bayesian can enable us 

statisticians to provide the team (and the stakeholders – never forget 

them) with the estimated date of interest and the most important part - 

confidence intervals! 

The statistical methods we statisticians apply to 

this very important problem do not have to be 

complicated nor require a large set of assumptions 

or lengthy computations. They rely on statistical 

assumptions (distribution of the data).   

We can always complicate the model with 

covariates, known bank holidays and complex 

distributions. But is it really worth it as no clinical 

trial goes according to plan and predictions must 

be adjusted several times during the study based 

on the current data or additional input (e.g. new 

sites selected and opened)? 

Conclusion  

 

 MAGIC STUDY TO DATE:  

 158 RANDOMIZED  

 67 DEATHS 

 IA: AFTER 200 DEATHS 

 Recruitment: Poisson Distribution 

Death: Exponential, Log-normal or 

Weibull distribution 

Step 2: Using the randomization rate 

and the Poisson distribution 

simulate the number of patients 

randomized each day until all patients 

are randomized (sample size).  

Step 3: Repeat step 2 at least 1 000 

times.  

Step 4: The estimated date of when 

the last patient will be randomized is 

the median date of all the simulations. 

Associated 90% confidence intervals 

correspond to the 5% and 95% 

percentiles.  

Step 1: Using current data 

(date of randomization), 

determine the randomization 

rate.  

 Forecasting deaths Forecasting the Randomization 

 

 

  

Step 2: Repeat step 1 but for the time to lost-to-follow-up. 

Step 3: Using the estimated posterior parameters of the distribution;  

 For patients already randomized and still ongoing at the cut-off date,  

simulate the time of death and the time to lost-to-follow-up until the 

simulated times are greater than the censored times 

 For patients not yet randomized at the cut-off date, simulate the date of 

randomization for each patient left to be randomized and then simulate 

the time of death and the time to lost-to-follow-up 

Step 4: Censor patients for which the simulated time to lost-to follow-up 

is greater that the simulated time to death.  

Step 5:  Repeat step 3 and step 4, 1 000 times. 

Step 6:  The estimated date of when the nth patient will die is the median 

date of all the simulations. Associated 90% confidence intervals correspond 

to the 5% and 95% percentiles.  

Step 1: Using the actual data determine 

the time to death & posterior parameters of 

the selected distribution (e.g. Exponential). 

Exponential distribution Weibull distribution Log-normal distribution 

Randomization 

01JAN2014 Prediction 
01APR2014 Prediction 
28AUG2014 Prediction 
Forecasting death graphs 
Actual randomization                                         
Predicted randomization 

 



Withdrawal cohorts: 
• Group of subjects who withdraw from IP at the same follow up 

time. 
• Plots of outcome against follow up time by withdrawal cohort  

indicate that the degree of deterioration of respiratory health 
throughout the study contributes to the likelihood of 
withdrawal, shown in this previous, similar study: 

 

 

 

 

 

 

 

• This leads to an increased likelihood that subjects who make it 
to study completion are in better health than those recruited. 

 

 

 

 

An Event Driven Respiratory Trial 
 

Nick Cowans, Abigail Fuller, Andrew Holmes 
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1. Introduction 

4. Heterogeneity of 
patient population 

5. Variable follow up 

6. On-treatment only follow up 

7. Summary 
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Adapted from [3]: Subjects who prematurely 
withdrew from IP tended to do so once their 
FEV1 had deteriorated to a certain point 
(1100ml). 
 

Key: each group of black dots connected with 
dotted lines represents the mean FEV1 at each visit 
for subjects who withdrew before the next 
scheduled visit. For example, subjects in the * 
group withdrew between 48-72 weeks. The blue 
dots represent the mean FEV1 at each visit for 
subjects who completed the study without 
withdrawing from IP. 

Chronic obstructive pulmonary disease (COPD) often coexists 
with other chronic diseases and comorbidities that can markedly 
influence patients' health status and prognosis. This is particularly 
true for cardiovascular disease (CVD). 

This has led to assessment of inhaled COPD medications for 
overall survival benefits, often using event driven designs. 

Such designs present numerous statistical issues, including: 

• Predicting the common end date at which the target number 
of events will have accrued. 

• The heterogeneity of the study population over time. 

• Variable follow up due to the common end date. 

• Missing data for secondary/tertiary endpoints following 
withdrawal from treatment. 

In this poster we consider these issues as they arose in planning 
the analysis of The Study to Understand Mortality and Morbidity 
in COPD (SUMMIT) [1]. 

 

 

Recruitment occurred over three years, but the study ended for 
all subjects on the common end date, resulting in variable follow 
up amongst subjects: 

• Subjects recruited  later are unable to be in the trial long 
enough to accumulate long term data so have less potential 
follow up than those recruited earlier. 

• Such censoring at the common end date unlikely to be 
informative. Assume Missing at Random (MAR). 

• For time to event analysis, for example for the primary 
endpoint, this does not present additional issues. 

• For events (e.g. Exacerbations), analyse time to first 
exacerbation in preference to rate (with the latter as 
supportive). 

• For endpoints measured regularly (e.g. change in FEV1), use 
Mixed Model Repeated Measures analyses assuming MAR, 
with primary analysis of effects at 1 year. 

For the primary end point of all cause mortality, survival status 
will be collected until the common end date, even for subjects 
who withdraw from IP, with (almost) complete follow up 
expected.  

However some secondary & tertiary endpoints (e.g. COPD 
exacerbations, FEV1) are only followed up whist subjects are on-
treatment and undergoing regular visits: 
• To assess whether withdrawal from IP is related to outcome, 

and what the missing data post we considered “withdrawal 
cohorts” (right). 

• Missing data post withdrawal from IP unlikely to be MAR. 
• In a previous study it was shown that subjects who withdrew 

were more likely to be older and have baseline characteristics 
indicating poorer respiratory health (more prone to 
exacerbations and lower baseline FEV1). 

• Analyse rate of FEV1 decline using random coefficient models, 
and assess sensitivity using imputation. 
 

 

 

 2. SUMMIT 
The Study to Understand Mortality and MorbidITy in COPD 

• An event driven, placebo controlled, long term, global, 
randomised clinical trial to investigate the impact of 
fluticasone furoate/vilanterol combination and the individual 
components on the survival of patients with moderate COPD 
and either a history of CVD or at increased risk for CVD.   

• Secondary endpoints are rate of decline in FEV1 and time to 
first cardiovascular event and there are various tertiary 
endpoints. 

• FEV1 is a spirometry lung function test that measures the 
volume of air that can be expelled in the first second from a 
maximum inspiration.  

• In patients with obstructive diseases like COPD, instigating 
certain treatment regimes can cause an increase in FEV1 at 
the initial visits following baseline, following this, FEV1 will 
decline with time. 

 

3. Common End Date 
• The common end date was defined as the date at which the 

number of events that the study was powered for will have 
occurred. All subjects will be followed up to this date. 

• To allow preparation for final visits, the common end date had to 
be decided in advance. 

• In order to do this, it was necessary to predict at what time the 
desired number of events (deaths) would occur. 

 

Contrast with the usual respiratory trials for symptomatic endpoints: 

• Primary endpoint of time to death. 

• Long follow up (1-4) years, with Investigational product (IP) 
treatment for the duration of follow up. 

• Event driven: follow up is until a specified number of events have 
accumulated, with analysis at a common end date for all subjects. 

• Complete follow up for vital status up to the common end date, 
even if the subject is withdrawn from IP, with negligible loss to 
follow up or withdrawal from the study. 

• Large and multi-regional, with rolling start. 

• Secondary & tertiary symptomatic respiratory endpoints (e.g. lung 
function, exacerbations, quality of life) are only collected whilst 
subjects are on-treatment. 

• Due to the symptomatic relief afforded by these treatments, 
withdrawal from treatment may be related to (perceived) lack of 
efficacy, and may therefore be more prevalent in the placebo arm. 

 

Patient population is heterogeneous over (follow up) time as 
some regions began recruitment before others but the study 
ends for all on the common end date. 
• Regional differences in prognostic demographic and 

baseline characteristics. 
• Contrasts with many respiratory studies with fixed duration 

follow up for all subjects. 
• Danger of temporal plots being interpreted longitudinally. 

To mitigate: 
• Guard against longitudinal interpretation of plots, especially 

Kaplan-Meier curves [2]. 
• Primary analyses of repeated measures endpoints at 1 year. 
• Include known prognostic factors in models and present 

adjusted plots (e.g. LSMeans for baseline OBSMARGINs for 
change in FEV1). 

• Weekly death tracking was carried out in order to determine how 
many deaths were being reported. However, deaths occurring 
between scheduled contact, and other factors, meant that there 
was a lag in reporting of events (see above). 

• Probability of death so far in the study (excluding the lag time) was 
used to predict the common end date (see left). 

• An interim survival sweep where all subjects were followed up for 
vital status at a scheduled visit or over the telephone was carried 
out in order to get a more accurate sense of the true number of 
deaths. 
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• In contrast to conventional fixed duration 
respiratory trials, event driven trials can reduce 
the length of the study for the primary endpoint. 

• However, they add further complexity, especially 
when dealing with secondary and tertiary 
continuous endpoints such as FEV1 over time or 
rate of exacerbations, which are only collected on 
treatment. 

• It is difficult to predict the analysis date (common 
end date) accurately. 

• Heterogeneity of patient population over time 
must be considered when making longitudinal 
inferences. 

• Censoring due to the common end date can be 
considered missing at random but censoring due 
to withdrawal from treatment can not. 

• Withdrawal cohorts are useful for assessing likely 
patterns of missing data. 

• Explanation of event driven trial difficult in setting 
where fixed duration is considered the norm. 
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Ensuring the quality of your data in Respiratory 
trials: Data management from a statistical 
standpoint 
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 2. Measures of Interest 1. Introduction 

3. Rate of Exacerbations 

5. Summary 
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Large, global late phase studies inevitably involve huge 
amounts of data of varying quality. Data frequently needs 
cleaning up prior to locking the database, a responsibility 
typically lying with data management. The ability to look at 
multiple extracts of data while the study is ongoing and 
blinded has enabled us to develop novel methods and 
processes for increasing the confidence in data quality. 
 
Forced expiratory volume in one second (FEV1) is the volume 
of air expelled from the lungs in one second, this is 
measured in millilitres or litres depending on the equipment. 
Outliers in FEV1 can commonly be caused by a decrease in 
subject effort, illness or equipment failure. These values 
would not be considered valid and including many subjects 
with these values in the analysis can cause variations that 
may not represent the true treatment differences. Looking at 
these in a visual way emphasises the importance of ensuring 
that these outliers are genuine data points. 
 
A respiratory exacerbation is an event, such as pneumonia or 
a COPD exacerbation that effects the airways and hence the 
patients ability to breathe. Respiratory tract exacerbations 
may present over a period of a few days with symptoms 
progressing. Due to this, sometimes these events can be 
recorded as two separate exacerbations when they are 
actually the same event progressing over time. When rates 
of respiratory tract exacerbations are an endpoint, recording 
duplicate or overlapping events will alter results.  
 
The need for identifying these two different situations is 
apparent. Previously, clinicians would spend time looking 
through vast amounts of data, however, these Patient Profile 
review tools have made clinical review a quick and easy 
process stressing the importance of these data on our 
endpoints. 

FEV1  Rate of Decline 
 
Rate in decline FEV1 is an endpoint commonly used in respiratory 
trials. Rate of decline is measured in millilitres per year and a raw 
rate of decline can be calculated simply using linear regression.  
 
When calculating the slope extreme values of FEV1 caused by 
respiratory events or equipment malfunctions can lead to 
differences in the rate of decline that don’t represent the true rate 
of decline of the subject. This is illustrated here in this example plot 
of FEV1(mL) against Time (weeks). As illustrated in the figure, 
changing the final data point to be 
an outlier (red) changes the raw  
rate of decline quite substantially. 
 
Subjects with outliers can be found  
easily, but the influence on the  
results is more difficult to explain  
without a visual/graphical option. 

Rate of exacerbations 
 
The rate of exacerbation events can be reduced by taking certain 
medications and hence this rate is also often used as an endpoint.  
 
This can be easily calculated as the number of exacerbations divided 
by the time of treatment. For example, if one subject has one 
exacerbation in 6 months, the rate would be 2 exacerbations a year. 
This means that if an exacerbation event is recorded as two events 
instead of one, the subjects exacerbation rate per year can be as 
much as doubled. If this happens with a lot of subjects this can 
influence the results. 
 
This  data would traditionally be reviewed at a subject level, subjects 
with multiple respiratory events could be programmatically identified 
but data would be reviewed on a case by case basis, an inefficient 
and time consuming process. 
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The need to have a visual tool to ease the clinical review was 
identified, with an emphasis on user ease and content 
needed to reach a clinical decision on further action.  
 
Using a combination of excel and SAS, the following tool was 
developed. Some clinical review rules for FEV1 rate of decline 
were identified including large differences between 
screening and baseline values and calculated individual rate 
of declines greater than 750mL/year. Utilising these rules, a 
review spreadsheet was created identifying the subjects 
programmatically in SAS. Filtering on subject number gives 
the individual subject information on one page, including 
treatment information, previous queries, responses and any 
previous review information.  
 
 

4. FEV1 Rate of Decline 

For Rate of Exacerbations, the data was presented in a patient profile bar plot, 
with one plot per overlapping event. Information on medications taken at the 
time of the respiratory exacerbation was included as well as duration of the 
event in days. 
Presenting this information in a visual way, it is apparent that the 2nd Adverse 
event is not a second event but actually the same exacerbation event which 
probably started on 31st December. This event would increase the rate of 
exacerbations for this subject. In this example, the case is easy to deal with, 
however, when events are separated by a few days or even a week, the case is 
not so simple, and having the medications taken by the subject is more 
important. 
These profiles were reviewed by the clinical team and further action was taken 
of querying the data or sending the exacerbation profile to the site and asking 
them to clarify the data. When the site can visually look at the profile, it is 
immediately clear if they have made any misrepresentation of what happened 
in the recorded data, and if not they can explain the differences for the clinical 
team to review.  

Upon reviewing the spreadsheet, decisions can be made as to whether to take any 
further information, if a query has been answered previously with an appropriate 
clinical reason for the discrepancies in FEV1 between visits then the decision may be 
made to not take any further action with the data, as it represents the true values. 
Previously, upon reviewing the data, query history for subjects would not have been 
available to view as easily. 
 
Once all subjects have been reviewed and decisions whether to issue a profile made 
the spreadsheet can be read into SAS and a PDF version of the patient profile is 
created and issued to the site for review. This document contains the clinical review 
comment, the graphical representation of the FEV1 data and space for the site 
investigator to comment to explain any large variations. Placing all of the 
information into one document makes the anomalies in the FEV1 data visually clear 
to the investigator at the site, whilst providing anymore information they need to 
investigate. 
 
The PDF profiles can be issued to sites for their review. If they see any immediate 
data entry issues with the FEV1 data, it is assumed these will be corrected and the 
subject will no longer be picked up by the clinical rules set initially. Alternatively, the 
Principal investigator can return and comment on the discrepancies in the box 
supplied. These comments can also be entered into an electronic data capture 
system to track. The comments from the site should explain the discrepancies seen 
in the data and can be reviewed by a clinician to make sure they make sense 
medically. 

• Reviewing study data in the traditional way 
can be a time consuming process. 
• Data can be difficult to review when 
displayed in typical dataset standards such as 
listings. Having unique tools can help our 
clinical colleagues keep track of their review 
more easily. 
• Visual tools can assist with understanding 
of impact on endpoints for both clinical 
reviewers and  investigators at sites. 
• Seeing an outlying on an FEV1 plot, or 
seeing clinical events overlapping in front of 
you in a diagram highlight the effect these 
would have on analysis . 
• Using more advanced programming 
approaches to identify and display individual 
subjects can have benefits for all 
departments, data management, clinical and 
statistics and programming.  
• With increased communication between 
departments  and providing these visual 
tools created from a statistical standpoint to 
data management, we can help increase data 
quality and hence contribution towards 
endpoints.  
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 The Pharma Industry relies on externally published and internally 

generated data to provide confidence to initiate and progress internal 
drug projects. 

 Many literature articles during the past decade have highlighted the 
need for improved preclinical research and the pace of publication is 
growing: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 “Sometimes the fundamentals get pushed aside – the basics of 
experimental design, the basics of statistics”  Lawrence Tabak, Principal 
Deputy Director of the National Institutes of Health (US). 

 Pfizer Research Statistics has worked for many years with scientists to 
increase the robustness of our preclinical research and the ACT is the 
result of that partnership. 
 

THE ASSAY CAPABILITY TOOL (ACT): DRIVING THE ROBUSTNESS OF PRECLINICAL ASSAYS  
 

Katrina Gore1, Jason A. Miranda2, Phil Stanley1, Jamie Turner2, Rebecca Dias2, Huw Rees2 

1 Research Statistics, PharmaTherapeutics Clinical Research, Pfizer WRD; 2 Neuroscience & Pain Research Unit, Pfizer, Cambridge UK 
 

ABSTRACT 
It is hard to pick up a recent copy of Nature, Science or many preclinical 
biomedical research journals without seeing an article on the issue of non-
reproducible research.  The pharmaceutical industry is not immune to 
these issues.  Replication of published research findings is a key 
component of drug target identification and provides confidence to 
progress internal drug projects.  Additionally, we use data from internally 
developed in vitro and in vivo assays to assess the biological and 
pharmacokinetic activity, selectivity and safety of novel compounds and 
make decisions which impact their progression towards nomination for 
clinical development. 
This poster outlines steps Pfizer is already taking to improve the scientific 
rigour of experiments through the use of the Assay Capability Tool.  The 
ACT promotes surprisingly basic but absolutely essential experimental 
design strategies and represents the distilled experience of the provision 
of over three decades of statistical support to laboratory scientists.  It 
addresses the age old issue of statistical design, the more recently 
highlighted issue of bias and the hitherto overlooked issue of whether the 
assay actually meets the needs of a drug project team. 

   
 A tool that promotes surprisingly basic but absolutely 

essential experimental design strategies; documents the 
strengths and weaknesses of an assay; and encourages the 
definition of what a successful assay outcome will look like. 

 13 item checklist assisting the scientist and statistician in 
designing fit for purpose preclinical assays / experiments. 

 “Quality mark” facilitating informed use of assay results by 
decision makers, e.g. drug project teams, governance bodies. 

 Have we defined a successful outcome in quantitative terms rather than 
just stating success is a statistically significant p-value? 

 Is the study design tuned to the objectives, i.e. can it deliver what the 
project needs to make crisps decisions? 

ACT CASE STUDY: MODULATION OF KNEE JOINT PAIN 
IN SPINAL CORD  
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ASSAY CAPABILITY TOOL – THE BOTTOM LINE 
The ACT was developed to guide the early development of assays and to 
assess their capability to generate reliable data. 
• It ensures good statistical design and analysis is embedded into the 

already established good scientific practices. 
• It explicitly addresses the question that is often implicitly taken for 

granted: “Does the assay actually meet the needs of the project?”. 
 

We believe the ACT is a practical step forward in improving 
the reproducibility of preclinical research and is central to 
Pfizer’s continued drive to embed statistical design and 
analysis into all of our research. 

1. Aligning Assay Capability with Project Objectives 

2. Enabling Assay Capability by Managing Variation 

3. Objectivity in Assay Conduct 

 Was the assay soundly developed and does it deliver consistent results? 
 Have we identified sources of variability and removed/controlled them? 
 What is the impact of variation on sample size and precision of results? 
 Are the critical features of the assay defined in a comprehensive 

SOP/protocol? 

 Has the potential for subjectivity in assay conduct, data handling and 
analysis been considered? 

 Have techniques of randomization, blocking and blinding been used, 
where required, to prevent unintentional biases? 

ADDRESSING 3 KEY ASPECTS OF ASSAY DEVELOPMENT 

1. Aligning Assay Capability with Project Objectives 

2. Enabling Assay Capability by Managing Variation 

 This is a novel in vivo spinal cord neurophysiological assay developed to test 
the efficacy of treatments for pain. 

 Electrophysiological data is collected from single neurons in the spinal cord 
of deeply anaesthetised rats pre-sensitised with monoiodoacetate (MIA) 
while performing non-noxious and noxious knee joint rotation. 

 The Assay Capability Tool was used to guide experimental design, leading 
to a high quality and robust preclinical assay that won an internal 2014 3Rs 
award from the Pfizer Animal Care and Welfare Board. 

This poster focuses on the use of the ACT in the development of the assay.  Full 
details of the assay methodology and the ACT can be found here: 
 

 Project objectives: the overall objective was to develop a high quality in vivo 
electrophysiology assay to confidently test novel compounds for efficacy 
against pain. 

 Defining success: a structured approach to assay development was 
performed using known agents to validate the methodology and define 
target values for the effect size and precision. 

 Structured assay development: a series of pilot and confirmatory 
experiments were run: 
 A small pilot oxycodone experiment was used to assess viability of 

the experimental approach 
 An exploratory oxycodone experiment aimed to identify the 

primary endpoint and understand the interplay between spike 
reduction and assay variation 

 A follow-up naproxen experiment was designed based on learnings 
from the previous experiments to test the prediction that COX-
1/COX-2 inhibition reduces the primary endpoint of tonic spiking 
activity in response to noxious joint rotation 

 Identifying variability: appropriate design of the individual experiments 
allowed sources of variability to be identified and their impact quantified. 

 Minimising variability: detailed protocols describing the experimental 
timelines and procedures were developed to minimise and control future 
experimental variation. 

 Sample sizing: sample size calculations were performed after the 
oxycodone and naproxen experiments to ensure the appropriate number 
of animals were used to meet each study objective and to guide the 
sample size for future drug studies. 

 Quality Control (QC) Charts: oxycodone or naproxen will be used in 
future experiments as a positive control and QC charts created to assess 
stability of response over time. 

3. Objectivity in Assay Conduct 

 Inclusion/exclusion criteria: these were developed for individual cells 
based on recording quality, animal health and joint rotation and were 
documented in the experimental protocol. 

 Randomisation & Blinding: to ensure the scientist remained unaware of 
the treatment an animal received and prevent unintentional biases, 
random allocation to experiment groups, allocation concealment and 
blinded outcome assessment were implemented and documented.  

 Blocking: each individual study was run in smaller separate blocks to 
prevent the introduction of bias from changing conditions over time.  A 
futility analysis was performed halfway through the study to prevent 
unnecessary subsequent animal usage. 

 Data processing & statistical analysis: any data processing methods were 
documented so they could be reproduced and a statistical analysis 
appropriate for the design, e.g. including baseline and block information, 
was used.  
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SUMMARISING THE THREE DOMAINS 
The three domains are summarised by a low, medium or high grade to 
indicate the level of confidence in decision making a team can have when 
using data from the assay. 

ACT IMPLEMENTATION & AWARENESS 
 Involves a partnership between statisticians and scientists, with the aim that 

the tool is “owned” by scientists. 
 Implementation has been tackled on many fronts: 

 Guidance documents and other supporting materials 
 Incorporation of the ACT into existing statistical training 
 Awareness presentations to scientists and project leaders  

 2014/2015 Research Statistics goals require the ACT in place for assays 
providing data to support project progression from the early stage of lead 
development through to drug candidate nomination. 
 Goal is also becoming part of Research Unit annual quality goals. 

 

THE ASSAY CAPABILITY TOOL (ACT) – RATIONALE 

THE ACT – WHAT IS IT 



Introduction  

The continual reassessment method1 (CRM) is considered more efficient 

and ethical than standard methods for dose-escalation trials in oncology, 

but requires an underlying estimate of the dose-toxicity relationship 

(“skeleton”). Previously we conducted post-hoc dose-escalation analyses 

on real-life clinical trial data from an early oncology drug (AZD3514) 

using the 3+3 method and CRM using six different skeletons; we found 

each CRM model outperformed the 3+3 method by reducing the number 

of patients allocated to suboptimal and toxic doses. The CRM models 

with conservative and sigmoidal skeletons were the most successful. 

 

Aim 
To compare the CRM with different skeletons and the 3+3 method in their 

ability to determine the true maximum tolerated dose (MTD) of various 

“true” dose-toxicity relationships. . 
 

Methods 

We considered seven true dose-toxicity relationships, one based on 

AZD3514 data and six theoretical with the true MTDs identified as the 

highest dose where the probability of suffering a DLT is below 33%. For 

each true dose-toxicity relationship 1000 simulations were conducted 

and the MTD was identified using the 3+3 method, one-parameter 

logistic CRM (CRM 1PL) with six skeletons and two parameter logistic 

model (CRM 2PL) as proposed by Neuenschwander2. The CRM will 

begin after the first patient has experienced a DLT, as proposed by 

Goodman3.  

 

AZD3514 data 
• Patients had metastatic castrate resistant prostate cancer  

 

• For each dose the P(DLT) was deduced using the first six patients 

assigned a dose below 2000mg QD who received this dose for at 

least 28 days and all 4 patients who received 2000mg BID.  

 

 

DLT curve  

 

 
 

 

 

 

 

 

 

 

 

 

 

Skeletons and 95% prediction intervals 
 

The skeletons were used in the CRM 1PL models and were used as 

theoretical true dose-toxicity curves. 
 

Conservative                              Aggressive 
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Sigmoidal                              O’Quigley 

 

 

 
 

Results 
Percentage of simulations which identified the true MTD 

 

 

 

 

 

 

 

 

 

 

 
  

 

 All CRM 1PL models outperformed the 3+3 for most true dose-toxicity  

     curves. The ability of the CRM 2PL model varied considerably 

     depending on true dose-toxicity curve.  
 

  For the CRM 1PL model, the skeleton has considerable influence on      

      the model’s ability to identify the true MTD. 
 

  Starting with an accurate estimate of the dose-toxicity curve does not     

      guarantee the best results. 

Dose escalation method summary 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 CRM 1PL and 2PL models had similar ability to identify the true 

MTD, and both outperformed the 3+3 method. 
 

 Compared to CRM 1PL, the 3+3 and CRM 2PL models were 

twice as likely to underestimate the MTD, but considerably less 

likely to overestimate the MTD. 
 

 For the CRM 1PL, the conservative and sigmoidal skeletons were 

the most successful at identifying the true MTD and they 

overestimated the MTD in a lower proportion of simulations. 
 

Discussion 
• The ability of the CRM model to identify the true MTD would be 

increased by increasing the number of patients. 
 

• Constraints could be added to the CRM 1PL model to minimize 

overestimating of the MTD, but this may influence its ability to 

identify the true MTD.  
 

Conclusion 
  The CRM generally outperformed the 3 + 3 method for the clinical  

      and simulated data. 

 

 The conservative and sigmoidal were the optimal skeletons for the    

     CRM 1PL model on real clinical and simulated data. 

 

  Clinical opinion should also be used in decisions to recommend     

      the next dose.  

  

  Further work is needed to determine the optimum combination of  

     dose-toxicity model and skeleton. 

   

For more information please email: gareth,james@phastar.co.uk  
 
1 O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics. 1990;46:33–48. 

2 Neuenschwander, Beat et al. (2008). \Critical aspects of the Bayesian approach to phase I cancer trials". In: Statistics in Medicine 27.13, pp. 2420{2439. 

issn: 1097-0258. 
3 Study design principles in the clinical evaluation of new drugs as developed by the chemotherapy programme of the National Cancer Institute. Carter SK. In 

The Design of Clinical Trials in Cancer Therapy, Staquet MJ (ed) Editions Scientifique Brussels 1973: 242-289. 

Assessment of various continual reassessment method models for dose-

escalation phase 1 oncology clinical trials: AZD3514 data and simulation studies 

 Dose-escalation method 

True dose-toxicity curve 

Cons Aggr Step Dose Sigm O'Qu AZD3 

 CRM 

 logistic  

 one-parameter 

Conservative 63 44 44 57 50 32 74 

Aggressive 45 49 31 53 34 38 38 

Step-up 45 49 30 64 33 43 58 

Dose-Linear 40 45 24 63 23 51 36 

Sigmoidal 52 45 33 68 33 46 73 

O'Quigley 40 49 27 66 29 44 58 

 CRM logistic two-parameter 66 27 45 28 77 10 71 

 3+3 - 33 32 23 37 47 18 65 

MTD selected by dose-escalation method (%) 

Dose escalation  

method 

True 

selected 

Under- 

estimated 

Over- 

estimated 

Could not 

determine 

  CRM 

  logistic  

  one-parameter 

Conservative 52 24 21 7 

Sigmoidal 50 20 26 7 

Step-up 46 22 28 7 

O'Quigley 45 22 30 7 

Aggressive 40 22 34 7 

Dose-Linear 40 18 38 6  

 CRM logistic two-parameter 46 39 4 16 

  3+3 - 36 43 7 20 

Key: Green: >70%, Blue: 50-70%, Red: <25%, Pink: skeleton=true curve 

Key: Green: best performing method, Red: worst performing method 
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Comparing methods for handling missing glycated haemoglobin 

(HbA1c) values in clinical trials on patients with Type II diabetes. 

Introduction 
 

Context 

Glycated haemoglobin (HbA1c) is the most commonly used measure of severity in Type II diabetes. In clinical trials, HbA1c is usually measured longitudinally, 

but levels of HbA1c can vary considerably between patients and within patients across time.   
 

Issues 

Due to the variability of the change from baseline HbA1c measure, simple missing data methods such as ignoring missing data and carrying data forward from a 

previous measurement may increase the bias and reduce precision of estimates of treatment effects. 
 

Aim 

Compare four missing data methods to investigate their ability to estimate the ethnicity effects in terms of bias and precision. 

Sophie Lee1, Tina Rupnik1, Gareth James1 

1 Unit 2a 2a Bollo Lane, London, W4 5LE 

Background  
 

Data 

We used primary care longitudinal data measures of HbA1c for 6104 

patients with Type II diabetes on a yearly basis from two inner London 

boroughs between 2007 and 2009. This data contained a number of 

healthcare measurements such as BMI and serum cholesterol. Only 

patients with complete healthcare data were included in the analysis, 

leaving 5264 patients. 
 

Motivation 

Previous analysis on this data found that, of the three ethnic groups 

investigated, south Asian people had less improvement in HbA1c than 

white or black African/Caribbean people[1]. We chose to investigate the 

ethnicity effect rather than treatment as this is what the publication did. In 

particular, we were interested in how well the two-fold fully conditional 

specification algorithm (FCS) imputed values as this method has 

performed well in epidemiology but has yet to be applied in clinical 

trials[2].  

Methods 
 

Using patients with complete data we reproduced results from recently 

published manuscript. We fitted a linear multilevel model  to estimate 

change from baseline in HbA1c in 2008 and 2009.  

The model was adjusted for available healthcare measurements.  

Three levels were used  instead of the four in the manuscript: year of 

measurement, patient and practice. 

 

Approximately 30% of the data for HbA1c measures was set to missing 

using a missing completely at random mechanism.  

We used four methods to handle the missing  HbA1c measures and 

generated a multilevel model for each of the datasets: 

  

Complete case analysis (CC) – only analyse patients for which all 

measurements are recorded. 
 

Last observation carried forward (LOCF)– replace missing 

measures with the last observed value from that patient. 
 

Multiple imputation (MI) – impute each missing measure with a set of 

plausible values drawn from a conditional distribution based on other 

available variables at any time point, analyse these sets separately 

and combine the results. 
 

Simplified two-fold FCS algorithm – impute missing values using 

multiple imputation based on other variables from the same time point 

or immediately adjacent time points only. 

  

Each method’s ability to estimate the true ethnicity effect based on the 

complete data was compared by calculating the bias and precision. 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
 

Further work is needed to determine the two-fold FCS algorithm’s ability to estimate treatment effects in a clinical setting using data with more time points. The 

data used in our research only contained 3 time points but the algorithm was developed to reduce problems due to overfitting when numerous time points and 

covariates are included in a model.  
 

This research could be extended by running the full two-fold FCS algorithm on the data and comparing results with the simplified method we used. Other 

missingness mechanisms could also be investigated. 
 

 Table 3 shows that the mean difference between true and estimated  values of change from baseline HbA1c measures calculated using the LOCF method is 

larger than MI and the simplified two-fold method. This method also produced a lower SD, reducing the variability of estimates. This implies that, although the 

models found using the LOCF method had a low bias, this method may not be as robust as MI and the simplified two-fold approaches. 

  
[1] James GD, Baker P, Badrick E, Rohini M, Hull S, Robson J. Type 2 diabetes: a cohort study of treatment, ethnic and social group influences on glycated haemoglobin. BMJ open 2.5 (2012): e001477.. 1990;46:33–48. 

[2] Welch C, Barlett J, Peterson I. Application of multiple imputation using the two-fold fully conditional specification algorithm in longitudinal clinical data. Statistics in medicine 33.21 (2014): 3725. 

 

 

Results 
 

Table 1: Comparison of ethnicity effects (white vs black African/Caribbean) 

 

 

 

 

 

 

 

 

 

 

 

MI outperformed other methods based on bias. 

 All methods underestimated precision. 

 

Table 2: Comparison of ethnicity effects (white vs south Asian)  

 

 

 

 

 

 

 

 

 

 

 

Two-fold method performed best in terms of bias. 

All methods outperformed CC in terms of bias. LOCF and MI produced a 

similar bias. 

All methods underestimated precision. 

 

Table 3: Differences between true change from baseline HbA1c values and 

imputed values 

 

 

 

 

 

 

 

 
LOCF has biggest difference between true and imputed values and lowest 

standard deviation. 

MI and simplified two-fold methods produce small mean differences between 

true and imputed values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Ethnicity effect Bias Precision 

True model (full) -0.099 ----- 288.6 

Complete case -0.133 0.034 165.8 

Last observation 

carried forward 
-0.155 0.056 221.9 

Multiple imputation -0.110 -0.011 194.0 

Simplified two-fold 

FCS algorithm 
-0.049 -0.050 198.9 

Model Ethnicity effect Bias Precision 

True model (full) 0.126 ----- 397.5 

Complete case 0.163 -0.037 222.7 

Last observation 

carried forward 
0.138 -0.012 304.5 

Multiple imputation 0.139 -0.013 291.2 

Simplified two-fold 

FCS algorithm 
0.122 0.004 184.8 

LOCF MI 1 MI 2 MI 3  MI 4 MI 5 
Two-

fold 1 

Two-

fold 2 

Two-

fold 3 

Mean 

difference -0.394 -0.009 -0.009 0.042 -0.108 -0.053 0.034 -0.021 -0.041 

Standard 

deviation 1.546 2.043 2.055 2.041 2.025 2.047 2.081 2.091 2.064 
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Methodology 
Kerman Priors for the Poisson-Gamma model 

Consider a Poisson-Gamma model for the AESI data. Let y = 

number of reported AESI and X=follow up time. Then  

 y~Poisson(λX)  where λ~Gamma(c,d) 

Kerman1 defines a set of priors for λ of the form  

Gamma(1/3 +ky, kX)  

Under these priors, the implied prior rate is y/X. k is a scale factor 

(taking a value between 0 and 1) which can be used to down-weight 

the influence of the prior, e.g. if the prior information comes from 

1000 yrs of follow up, using k=0.1 would down-weight this to be 

worth 100 yrs. If the assumed prior follow up time is the same as 

that in the observed data, k= 1 gives the prior and the observed 

data equal weight and k=0.5 gives the prior half the weight of the 

data. The prior Gamma(1/3,0) is considered a neutral prior in the 

sense that it gives posterior median distributions that are 

approximately equal to the observed y/X, as long as y is not 0. 

 

Using Kerman priors in the analysis of reported AESI data  from a 

drug development program can enable posterior probability 

statements to be made about the likely incidence of the AESI for the 

new treatment. Further, a decision framework can be constructed 

based on the posterior probability for incidence rate ratio (IRR) 

(active/ placebo) of the AESI being greater or less than a pre-

specified value. Where relevant and reliable historical data for the 

AESI exist, these can be used as values for y and X in setting the 

Kerman prior. Alternatively, the prior may be elicited. 

 

Simulation Study – Evaluating the method  

A simulation study was run to evaluate different Kerman priors for a 

range of true underlying data scenarios. Some possible decision 

rules were also included to demonstrate the utility of the method. In 

both the prior scenarios and the underlying true data scenarios, it is 

assumed that the AESI is rare. Use of so-called ‘non-informative’ 

priors would not be appropriate in such cases. 

Bolstering with Bayes:  
A framework for interpreting the risk of rare adverse 
events in the presence of limited clinical trial data 

  11 May 2015 

Introduction 

When a new drug completes phase II trials, drug development 

teams are primarily interested in assessing the risk-benefit profile of 

a new drug, in accordance with the Target Product Profile (TPP). 

There may be interest in evaluating the risk of an adverse event of 

special interest (AESI). For rare adverse events, limited data are 

available, and making inferences about relative increase in risk 

using traditional statistical methods becomes challenging, especially 

if zero events are reported in one or more treatment groups. As part 

of a Safety GO/NO-GO project, methods were explored for 

quantifying the risk of rare AESIs that could be used in decision 

making. In this poster, we present a Bayesian approach utilising 

informative conjugate priors as described by Kerman1. A case study 

will illustrate the application of the method.  

The following simulation parameters were investigated:  

• True data scenarios: 10 different scenarios considered, with 

underlying placebo and active rates varying from 0.5 to 5 per 100 

patient years 

• Priors: 14 different priors considered with rates varying from 0.5 

to 5 per 100 patient years and weighting with k=1 (equal weight 

to data), k=0.5 (half the weight of the data) and k=0.1 (a tenth the 

weight of the data).  

• Decision thresholds: IRR<1, IRR<1.5, IRR >2, IRR >3. 

For each scenario, the posterior summaries of the distributions for 

for the active and placebo treatments and for the incidence rate 

ratio were obtained and averaged over 1000 simulations. Full 

details of the simulations were pre-defined in a simulation plan.  

 

Simulation Study – Results 

Review of the posterior summaries for the 1000 simulations for 

each scenario showed that whilst the analyses gave consistent 

results in the majority of cases, some analyses produced posterior 

means for the IRR that were extreme. The posterior medians were 

more stable, although still with some extreme results. The influence 

of the prior was apparent, with many cases where the posterior 

medians were somewhat different from the true underlying data 

scenario from which the data were simulated.  

 

Nonetheless, looking at the posterior summaries averaged over the  

1000 simulations enabled some assessment of the operating 

characteristics of various decision rules for different scenarios. One 

such scenario is presented in Table 1. Here, rules for stopping 

development are considered. A good rule will lead to a decision to 

stop development if the relative incidence of the AESI is high on 

active compared to placebo, and will not lead to a stop decision if 

the incidence is the same in both groups.  

 

 

Data from programs of similar competitor products in the same 

indication are available, with incidence of serious infections in the 

range of 3 to 5.3 cases per 100 patient-years exposure. A meta-

analysis of approximately 1600 patient-years of placebo data was 

performed. The resulting placebo serious infections rate was 2.5 

cases for 100 patient-years exposure. This placebo rate was used 

to construct a Kerman prior for analysis of the mavrilimumab data.  

 

After appropriate adjustments to account for differing exposure, the 

mavrilimumab data were analysed using the Kerman priors, with 

k=0.5 (prior carries half the weight of the data) and k=0.1 (prior 

carries a tenth the weight of the data). The priors are illustrated in 

Figure 1, and the results are presented in Table 2.  

 

The mavrilimumab case study is retrospective, no decision rules 

were agreed a priori for the incidence of serious infections. 

However, it is unlikely that a decision rule to stop development 

would have been met; the posterior median for mavrilimumab is 

Concluding Remarks 
• Kerman priors, based on historical data or elicited opinion, can be 

used in a Bayesian analysis of a rare AESI, from which 

interpretations can be made about the probability of the true 

incidence of the AESI.  

• The method has limitations. An appropriate weighting should be 

given to the prior distribution. Too great a weight and the posterior 

will essentially just reflect the prior data. Too little weight and the 

posterior will be very spread and interpretations will not be very 

informative.  

• The method will not add value in situations where there is little 

safety follow-up data available, or where there are no events in 

any treatment group.  

• The methods described do, however, permit a decision making 

framework for a rare AESI to be established prior to the conduct 

of the study, and the posterior distributions can aid in interpreting 

the data. When setting decision rules before the study, 

consideration should be given to the amount of follow up and 

simulation should be used to assess the appropriateness of 

decision rules based on the study design and the TPP.  

 

 

 

True Underlying 

Scenario (events 

per 100 patient 

years) 

 

Placebo, Active 

Desired Outcome Probability of a STOP decision 

(STOP if P(IRR< 1.5) is less than 0.2) 

Prior based on 2 AESIs per 100 

patient years weighted with  

k=0.5 k=0.1 

0.5, 0.5 GO 0.01 0.07 

2,2 GO 0.06 0.11 

5,5 GO 0.08 0.11 

0.5, 1 PROBABLE GO 0.04 0.15 

1,2 PROBABLE GO 0.13 0.26 

2,5 BORDERLINE 0.35 0.44 

0.5, 2 STOP 0.23 0.42 

1,5 STOP 0.56 0.67 

0.5, 5 STOP 0.70 0.82 

Table 2: Posterior summaries for mavrilimumab data under different priors 

Prior Node Posterior Percentiles P(IRR<x) where  

10% 50% 90% x=1 x=1.5 x=3 

Historical 

placebo 

prior, k=0.5 

 

Mavrilimumab 0.80 1.61 2.79 n/a 

Placebo 0.14 0.88 2.99 

IRR 0.44 1.81 12.02 0.31 0.44 0.65 

Historical 

placebo 

prior, k=0.1 

 

Mavrilimumab 0.51 1.30 2.65 n/a 

Placebo 0.01 0.33 2.30 

IRR 0.45 3.99 247.11 0.23 0.31 0.45 

Table 1: Operating characteristics for one simulation scenario. 

We see that for a prior based on 2 AESI per 100 patient years, for 

a study with 100 patient years exposure in each group, then using 

the decision rule ‘STOP if the P(IRR<1.5) <0.2 has reasonable 

operating characteristics. In the case where the true incidence is 

10 fold higher on active than placebo, a STOP decision would be 

made 82% of the time. When the true incidence is the same in both 

groups, a STOP decision is made less than 15% of the time.  

 

Case Study – Mavrilimumab  
A phase II program in rheumatoid arthritis recently completed for 

mavrilimumab, a fully-human monoclonal antibody targeting the 

alpha subunit of GM-CSFR. The occurrence of serious infections 

was of interest since they are known to be associated with use of 

biologics2. Across two placebo-controlled phase 2 studies, 2 

serious infections were reported in 439 patients treated with 

mavrilimumab, with a total exposure of 173 patient-years, an 

incidence of 1.16 cases per 100 patient-years. No serious 

infections were reported in 177 patients treated with placebo, with 

a total exposure of 53 patient-years3,4.  
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Figure 1: Kerman Priors for serious infection rate based on 

historical data 

lower than the range from competitor products, and the posterior 

distribution for the IRR is widely spread, as we might anticipate with 

a small amount of available data.  
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‘Hot deck’ Imputation: Determining a nonparametric statistical model for the distribution of missing data and its application in a Rate of Decline 
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● To provide an alternative assessment of treatment efficacy  assuming a MAR 
mechanism, a supporting analysis using a ‘hot-deck’ imputation approach is 
proposed.   
 

● As SUMMIT is an on-going study, and unblinding has not yet occurred, a dummy 
randomisation has been applied. 
 

● One of the secondary endpoints is the rate of decline of on-treatment post-
bronchodilator FEV1. When considering an on-treatment analysis, there are two 
missing data situations, data is missing due to a subject missing a visit or data is 
missing due to a subject withdrawing from treatment. The latter of these is 
considered here. As the ’missingness’ of data in this endpoint is related to 
withdrawal, a MAR mechanism is assumed, and covariates relating to withdrawal 
are considered for the ‘hot-decking’ method.  
 ● In this run, the sensitivity method is robust, the results were very similar between 

the two methods. However, due to dummy randomisation being applied we do not 
know the full impact of missing slopes data being imputed. 

● The hot-deck imputation method  is easy to apply to the SUMMIT database and 
provides an alternative method when using other approaches in large datasets  
become difficult when a MAR mechanism is assumed. 

1. James Carpenter, Jonathan Bartlett, and Mike Kenward, London School of Hygiene and Tropical Medicine 
www.missingdata.org.uk.  

2. James R Carpenter and Michael G. Kenward, WILEY, ISBN: 978-0-470-74052-1 Multiple Imputation and its 
Application  

3. Rubin (1981) The Bayesian Bootstrap The  Annals of Statistics  9 130 – 134  
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Subject 
No. 

Column 
heading  

2 

Column 
heading  

3 

Column 
heading 

4 

1 1540 1550 1540 X 

2 1700 1750 X X 

3 2150 2300 X 2180 

● Missing data is a serious problem in clinical trials and may compromise the 
validity of treatment comparisons because “missingness“ may be related to the 
drug’s effectiveness, safety or patient prognosis.  
 

● There are three types of missing data to consider: Missing Completely at 
Random (MCAR);  Missing at Random (MAR) and Missing Not at Random 
(MNAR). For the mechanism of ‘missingness’ to be considered MCAR, the 
probability of the data being missing is unrelated to both observed and 
unobserved data. An example would be a researcher removing a randomly 
selected sample from the data. For the mechanism to be MAR, the behaviour of 
the ‘missingness’  is related to values of observed data but not unobserved data 
and for the mechanism to be MNAR the data is missing for a specific reason and 
is related to unobserved data. 
 

● Although best efforts are taken to minimise missing data, missing values are 
inevitable and how this is accounted for in the analysis is an important 
consideration. There are several existing methods for handling missing data, 
however, all methods rely on assumptions that cannot be verified.  
 

● ‘Hot-deck’, or non-parametric imputation is one approach. Non-parametric 
imputation is appealing when dealing with a large dataset of subjects since 
parametric imputation (i.e. choosing, estimating and imputing from a parametric 
statistical model for the distribution of the missing data given the observed data) 
can prove challenging. 

 

● SUMMIT is an on-going large clinical outcomes study comparing the effect of the 
once daily ICS/LABA combination Flucticasone Furoate/Vilanterol Inhalation 
powder 100/25mcg with placebo on the survival in subjects with moderate COPD 
(≥50 and ≤70 % predicted FEV1) and a history of or at risk for cardiovascular 
disease. 

 
● One of the secondary endpoints is the rate of decline of on-treatment post-

bronchodilator FEV1. When considering an on-treatment analysis, there are two 
missing data situations, data is missing due to a subject missing a visit or data is 
missing due to a subject withdrawing from treatment. The latter of these is 
considered here. As the ’missingness’ of data in this endpoint is related to 
withdrawal, a MAR mechanism is assumed, and covariates relating to withdrawal 
are considered for the ‘hot-decking’ method.  
 

● For the main analysis of this endpoint, a random coefficients model is used. 
However, this approach gives more weight to subjects with more data; hence a 
sensitivity analysis of individual regression slopes is performed. To perform this 
individual slopes analysis, every subject with at least two on-treatment FEV1 
values has their on-treatment slope calculated using linear regression. (See Table 
1). These slopes are then analysed using an analysis of covariance. 
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Slope not missing 
 
Slope missing 
 
Slope not missing 

 
 

3.   To illustrate how the propensity score is used, 
let us take an example of Strata 1 with say 
300 subjects. Each subject in that strata has 
had a propensity score calculated; the 
subjects are then ordered and split into 5 
groups of N subjects (20% in each). This is 
done for each of the other 71 strata, giving 
360 group-strata combinations, each with 
approx N = 60 subjects (strata may vary in 
size, because there are fewer females than 
males).   
 

4.   Within each group-strata combination, 
subjects with a slope were selected.  Again 
using the example of group-strata 1, a donor 
pool, Pool(1) of size n (subjects with a slope, 
say 40) is drawn at random with replacement 
from the n subjects in this group-stratum with 
slopes.  To determine the slopes of those 
subjects without a slope   (N-n, say 20 
subjects), the number of subjects missing a 
slope is sampled at random with replacement 
from Pool(1). This process is repeated for 
each of the remaining 359 group-stratum 
combinations. 
 

5.   The observed and imputed slope data from all 
360 group-strata combinations  are combined 
to form an imputed dataset (DS(1)).This 
procedure is then repeated 100 times to 
produce a series of 100 imputed datasets 
DS(1), DS(2),...., DS(100). The double re-
sampling (i.e. sampling with replacement from 
the subjects with slopes to form a donor pool 
and then for each subject that has  a missing 
slope, drawing a donor from the donor pool 
with replacement) approximates the Bayesian 
bootstrap Rubin (1981). 
 

6.    The analysis of individual slopes is performed 
on each of the 100 imputed datasets to give 
100 sets of results. These are then pooled 
and one set of results obtained using PROC 
MIANALYZE in SAS.. 

Strata 1 
Treatment A 
Males 
Low Baseline 
FEV1 
Low Age 

Strata 2 
Treatment A 
Males 
Low Baseline 
FEV1 
Medium Age 

 

 

Strata 72 
Treatment D 
Female  
High Baseline 
FEV1  
High Age 

 

 
Group 1 Group 2 Group 5 

Group 1 (N) 

With Slope (n) Without Slope 
(N-n) 

Sample n 
with 
replacement 

Pool 1 (n) 

Sample N-n 
with 
replacement 

Imputed values 
for subjects 
without slope 

Observed and 
Imputed Group 
1 Values 

Process repeated for all 360 Groups 

* 

* 
Observed and 
Imputed Group 
1 Values 

Observed and 
Imputed Group 
360 Values 

DS1 Analysis 
results 1 

Imputation process 
repeated 100 times 
using different 
sampling seeds  

Analysis 
results 1 

Analysis 
results 100 

Final 
Results 

... 

... 

... 

... 

A slope was calculated for all those subjects in the ITT population by regressing 
FEV1 on time. For those subjects who do not have at least 2 post-baseline 
measurements, ‘Hot-deck’ imputation has been carried out in the following steps: 
 

1. Subjects were stratified by treatment, gender, age (3 levels) and baseline 
FEV1(3 levels) (i.e. 72 different strata, e.g. Treatment A, Males, Low Age and 
Low Baseline FEV1 or Treatment D, Females, Medium Age, High Baseline 
FEV1).  The 3 categories for age and baseline FEV1 were defined by splitting 
the data into tertiles. As some of the strata did not have enough non-missing 
data when all data was considered, the tertiles were defined within gender 
groups. The average of the individual regression slopes will vary between the 
defined stratum.  
 

2. A propensity score was calculated by fitting a logistic regression model to all 
subjects including covariates that  were expected to be related to withdrawal 
from treatment. The presence or absence of a slope was fitted as the response 
with covariates expected to affect withdrawal like BMI, previous exacerbation 
history, etc 

 
 

 

All 
Subjects 

Results 

-40 -30 -20 -10 0 10 20 30 40 50 
Difference in Rate of decline 

B vs A 

C vs A 

D vs A 

B vs A Imputed 

C vs A Imputed 

D vs A Imputed 

Figure 2. Plot of Treatment differences with 95% CI for two methods – 
No imputation & Imputation applied 

 

Using dummy treatment groups we compared  the analysis using  imputed data to 
that using  observed data. The results were very similar. However, the imputation 
shows marginally narrower confidence intervals as the variation has been slightly 
reduced as we would expect given the number of subjects contributing to the  
analysis has increased. 
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Results 
Our findings are displayed in the Table 2 and Figure 1. 

  

 All four models approximated Poisson and ZIP data well.  

 Poisson regression model performed best only with Poisson data, 

whilst its performance on all other data (mainly in presence of high 

variances such as the NB and ZINB distributions) was the poorest.  

 On the contrary, NB model provided the best or second best fit to all of 

the data. 

 ZINB performance was similar to NB for data with higher variances. 

However, the model did not approximate well Poisson and ZIP data. In 

such instances the ZIP model provided a better fit. 

 

Table 2:  Summary statistics and model AIC for various parameters 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 
Summary statistics and model AIC for various parameters in all four types of data. Best model fit corresponds to the 

lowest AIC coloured in green, worst (highest AIC) – in red.  

 

Figure 1:  Average probability distribution of asthma exacerbations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Simulations for λ=0.5. Similar results were obtained for λ values 1 and 2 and are not reported here. 

 

Discussion 
In asthma clinical trials, Poisson regression is frequently used to analyse 

exacerbation rates. However, in our study, Poisson model only worked 

well with strictly Poisson data and in other cases provided the worse fit. 

  

Our data suggest that NB always provides the best or second best fit for 

both over-dispersed and non-over-dispersed count data, even in the 

presence of high zero inflation. 

  

If the nature of the experiment strongly suggests that the data come from 

a specific model then this should be considered first. 

  

In the future we would like to consider additional parameter values in 

order to identify potential thresholds to use as guidance in the choice of 

the best fitting model. Furthermore, the correlation between these 

parameters should be investigated in more detail.  

 

 

Introduction  
In asthma clinical trials, Poisson regression is frequently used to analyse 

exacerbation rates, assuming that the mean occurrence rate of the event 

is equal to its variance. However, asthma exacerbation data are often 

characterised by over-dispersion and frequent zero-count observations. 

Thus, a Poisson regression might fit these data poorly and other 

generalised linear models could perform better. When the variance is 

higher than the mean event rate, a negative binomial (NB) regression 

model should be preferable. Zero-inflated Poisson (ZIP) and zero-inflated 

negative binomial (ZINB) models are also used to avoid the 

underestimation of rates of excess zero-count events.  
 

Aim 
The aim of this work was to investigate the performance of a Poisson, 

NB, ZIP and ZINB regression models on data characterised by over-

dispersion and zero-inflation. 

Methods 
  

Data 
We simulated exacerbations data from Poisson, NB, ZIP and ZINB 

distributions using different parameter values (Table 1) with ranges that 

are relevant in asthma (e.g., 0-2 expected exacerbations per year).  

 

Table 1: Parameter selection 

 

 

 

  
  
 
λ - expected number of events per year, k – shape or over-dispersion parameter, pzero– probability used for 

generating zeros in ZIP and ZINB. 

 

We used the common example of asthma exacerbations to inform the 

parameter space for the count data. However, this can be extended to 

any count data. 

 

For each distribution we simulated 100 samples with 100 subjects in 

each sample. Subjects were randomly allocated to treatment A or B.  

 

Statistical analysis 
  

For every type of simulated data we applied four regression models: 

Poisson, NB, ZIP and ZINB (proc genmod in SAS). We compared the fit 

of the models in terms of Akaike Information Criterion (AIC – the lowest 

the best) and by plotting the average probability distribution and 

simulated frequency of exacerbations. 
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Count data: should we bother with Poisson or zero-inflated models? 

 
Anna Rigazio, Audrone Aksomaityte, Michael Fitzgerald, Pinal Patel 
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Parameters Summary statistics Model AIC 
 Data λ k pzero Mean Var % of zeros Poisson NB ZIP ZINB 

Poisson 
0.5 NA  NA  0.5 0.51 60 189.16 191 190.9 193 
1 NA  NA  1 0.96 40 260.37 262.2 262.1 264.2 
2 NA  NA  2.0 1.98 10 342.66 344.4 344.4 346.4 

ZIP 

0.5 NA  0.2 0.4 0.44 70 168.45 169.5 169.4 171.4 
0.5 NA  0.5 0.3 0.32 80 130.42 130.1 129.8 131.8 
0.5 NA  0.8 0.1 0.13 90 68.67 67.5 66.93 69.08 
1 NA  0.2 0.8 0.96 50 245.42 245 244.3 246.3 
1 NA  0.5 0.5 0.77 70 203.1 195.9 194.1 196.1 
1 NA  0.8 0.2 0.37 90 117.7 107.5 106.1 108.1 
2 NA  0.2 1.6 2.23 30 344.91 339.9 335.1 337.1 
2 NA  0.5 1.0 1.98 60 307.91 277.9 268.8 270.7 
2 NA  0.8 0.4 1.03 80 193.09 150.5 145 146.9 

NB 

0.5 1 NA  2.0 5.79 30 449.04 386.3 410.2 387.6 
0.5 2 NA  8.0 40.71 0 825.14 617 795.3 618.6 
1 1 NA  1.0 2.02 50 302.31 281 286.1 282.3 
1 2 NA  1.0 2.02 50 302.31 281 286.1 282.3 
2 1 NA  0.5 0.79 70 202.67 196.5 197.3 198.2 
2 2 NA  2.0 4.06 30 404.61 378.8 391.1 380.4 

ZINB 

0.5 1 0.2 1.6 5.56 50 433.96 345.1 365.6 345.7 
0.5 1 0.5 1.0 4.01 70 363 259 268.4 257.9 
0.5 1 0.8 0.4 2.07 90 222.83 134.2 137.1 133.3 
0.5 2 0.2 6.5 42.39 20 942.12 591 715.8 578.8 
0.5 2 0.5 4.0 35.37 50 948.97 454.4 517.6 435.9 
0.5 2 0.8 1.5 18.55 80 652.27 219.5 239.3 209.4 
1 1 0.2 0.8 1.72 60 273.25 245.9 250 247 
1 1 0.5 0.5 1.24 70 217.98 185.2 187.2 186 
1 1 0.8 0.2 0.55 90 122.67 95.98 94.71 96.06 
1 2 0.2 3.2 12.19 30 597.88 466.7 499.7 462.5 
1 2 0.5 2.0 9.92 60 556.12 359.1 371.6 350.3 
1 2 0.8 0.8 4.58 80 348.47 181.5 182.8 176.7 
2 1 0.2 0.4 0.64 70 178.28 171.2 171.5 172.7 
2 1 0.5 0.2 0.45 80 133.88 123.8 123.4 125 
2 1 0.8 0.1 0.19 90 70.9 63.87 63.08 65.06 
2 2 0.2 1.6 3.97 40 394.98 348.5 357.9 348.6 
2 2 0.5 1.0 3.05 60 341.05 274.5 277 272.8 
2 2 0.8 0.4 1.45 80 207.74 144.1 143 143 

  Distribution 

Poisson (λ) ZIP (λ, pzero) 

λ 0.5, 1, 2 0.5, 1, 2  0.5, 1, 2 0.5, 1, 2  
k NA 1, 2 NA 1, 2 
pzero NA NA 0.2, 0.5, 0.8 0.2, 0.5, 0.8 

Poisson NB NB 

ZINB ZINB ZIP 

ZIP 

ZIP 

ZINB ZINB 

ZINB ZINB 

Pzero=0.2 

Pzero=0.5 

Pzero=0.8 

k = 1 k = 2 

http://statisticalhorizons.com/zero-inflated-models
http://statisticalhorizons.com/zero-inflated-models
http://statisticalhorizons.com/zero-inflated-models
http://statisticalhorizons.com/zero-inflated-models
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Statistical models for de facto estimands - beyond sensitivity analysis.
James Roger and Michael Kenward

London School of Hygiene and Tropical Medicine.

Premise

1. A well defined estimand is critical for handling data from patients who
withdraw early.
I The quantitative value of some types of estimand depends directly on the extent

and nature of the withdrawal process.
I A de facto estimand will be an average over those who complete treatment up to

final visit and also over those who do not fully comply.

2. Any estimand must define a treatment strategy for those who do not
comply, either because they cannot or will not. [follow-on regime]
I The actual regime used in the trial after treatment withdrawal may or may not match

this follow-on regime.

There is no agreed methodology for handling such de facto estimands
in a primary analysis.

The Big Issue

I Regulators are moving the emphasis for estimands in confirmatory
studies away from efficacy and towards effectiveness.
I De facto rather than de jure estimands may soon be required for primary analyses.
I If so, what will replace MMRM as the default approach for handling early withdrawal

in longitudinal studies?
I Currently such de facto estimands lie in the domain of sensitivity analysis using

multiple imputation, often known as reference-based imputation. These serve a
different purpose.

I This is a modelling issue with computational implications. It can be handled in a
Bayesian, likelihood frequentist or perhaps even semi-parametric fashion.

I For primary analysis in a confirmatory trial we require any data
imputation model and analysis model be congenial.
I They are not congenial in current de facto sensitivity analyses which use Multiple

Imputation.
I To be congenial the analysis model would need to know whether the subject

withdrew or not and allow for it, despite having complete data.

Not about “Missing Data”. Proposed way forward.

I Two major events can occur to a trial participant before they complete
which can both directly effect their future outcome.
1. End of randomized treatment
2. Withdrawal from study (end of observation)

I Data collected between these two events may or may not be relevant to
the estimand in question.
I Occurence of both events is likely to be related to previous observations.
I Both events must be simultaneously modelled together with the outcome of interest

estimand.
I Then from this estimated joint model derive the required assessment.

I Average the possible outcomes implied by the estimand’s scenario to obtain an
expected prediction for the estimand.

I This marginalisation step is crucially important and parallels approaches used for
causal inference in the epidemiological setting.

Some notation

For simplicity we restrict to only one event (combined withdrawal of
treatment and end of observation) and likelihood is that from a single
subect.

I R is a vector indicating whether or not subject is observed at this visit.
I yobs is vector of observed values whose length depends on R
I ymis is vector of non-observed potential values whose length also

depends on R, often called the “missing data”.

Extrapolation Factorizaton (EF) of the full data model

In contrast to both pattern mixture and selection models . . .
p(R, yobs, ymis|ω) = p(yobs, ymis|R, ω) p(R|ω)

p(R, yobs, ymis|ω) = p(R|yobs, ymis, ω) p(yobs, ypot|ω)
. . . the distribution of the full data is factored into joint distribution of the
observed values yobs and the Response pattern R, and then that for
unobserved values ymis conditional on the previous.

p(yobs,R, ypot|ω) = p(ypot|yobs,R, ωE) p(yobs,R|ωO)

[The Extrapolation Factorizaton (EF). See Daniels & Hogan. Chapter 9, section 9.1.1.]

In EF the potential part ypot could be the data after withdrawal, which
may or may not be seen. But it could similarly be some potential
distribution chosen to represent a different follow-up regime specific to
the desired estimand.

Fitting the model to observed data

The model can be fitted using maximum likelihood (NLMIXED) or in a
Bayesian way (MCMC) based on p(yobs,R|ωO) often seen as

p(y1)× p(R1|y1)× p(y2|y1,R1)× p(R2|y2, y1,R1) etc.
Both deliver an approximate “posterior” distribution for the parameters
ωO based on the observed part of the model.

I When ωE and ωO are the same set of parameters, we can then
immediately predict the outcome.

I If ωE contains extra parmaters not contained in ωO then these need to
be specified in some other way, either as fixed values or as some form
of distribution (a prior).

Predicting the estimand - equivalent of Least-squares Means

I The estimand reflects some function h(ypred,RPred) of the predicted
outcome based on the full EF model.
I For instance HbA1c at final visit. But might be an average, or even a score involving

the time of event R.
I The mean of h( ) can be evaluated at specific values of covariates x.
I The distribution D(x) across the covariate space defines the scenario

required by the estimand.
I For instance half male and half female.
I It may be redundent if h( ) defines treatment difference.
I This is what is usually specified in AT, OM and DIFF options of the SAS LSMEANS

statement.

The required value is then the margin over the distribution of
parameters (either from MLE or based on true Bayesian posterior).∫

P(ω|yobs,R)

[∫
EEF [h(ypred,RPred)|ω, x]D(x)dx

]
dω

where
I P(ω|yobs,R) is the posterior distribution for the parameters ω using.

I Posterior for ωO based on observed data.
I Other external information about additional parameters in ωE

Computational aspects

I Computation is easy but possibly slow within standard software such as
SAS.
I The outer integral involves summation over a sample from the posterior distribution

(output from MCMC). Easy to do.
I The inner integral either uses an algebraic solution for specific situations or

numerical integration. May be costly.
I Precision of the estimate can be recovered from the distribution of values across

outer loop. May require correction for imprecise value from inner loop.

Example: Repeated Measures Multivariate Normal

I Observed part of the EF model
I p(y2|y1,R1) is simple regression on any previous values.
I p(R2|y2, y1,R1) is logistic regression model conditional on not failing previously.
I Identical to MVNormal N(µ,Σ) with withdrawal imposed dependent on observed

values.
I Projected part of EF model under MAR

I Mean µpot + Σpot,obsΣ
−1
obs,obs(yobs − µobs) and Var. Σpot,obsΣ

−1
obs,obsΣ

T
pot,obs

I Now we can modify mean following J2R, CIR or CR.
The crucial step is to get difference between arms in response at final
visit margined over the joint EF model including withdrawal process.

Results based on MAR, CR, CIR and J2R

Diff. Mean expected value Bayesian EF model % of MAR at Week 6
Week 1 2 4 6

Method: MAR 0.22 -1.28 -2.16 -2.65
SED 0.68 0.87 0.92 1.03

CR 0.22 -1.18 -1.91 -2.23 84
SED 0.68 0.88 0.85 0.90 87
CIR 0.22 -1-03 -1.74 -2.01 76

SED 0.68 0.86 0.87 0.87 84
J2R 0.22 -1.05 -1.68 -1.71 65
SED 0.68 0.83 0.81 0.74 72

Table: Both estimate and SED are shrunk, with estimate shrunk slightly more.
5000 MCMC iterations and 1000 simulations within subject-by-simulation based on Observed Margins.

Data set & model from Mallinckrodt et al (Stat. Biopharm. Res., 5:4, 369-382, 2013)

James@livedata.co.uk Mike.Kenward@lshtm.ac.uk
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Introduction Considerations for PAES Guidance Content Considerations Within PSI Working Group

Ongoing development of EMA guidance on scientific principles 
for post-authorisation efficacy studies is an opportunity to 
ensure consistent use and common understanding of 
terminology regarding study types and design.  Existing 
regulation is restricted to studies conditional within a 
marketing authorisation.  Key requirements include clear 

 Principles-based approach, not specific methods for 
specific designs

 High-level scope – performance inside and outside 
the delegated regulation (DR)

 Covering imposed PAES, but mindful of voluntary 

Clear definitions of key terminology and study designs 
in the PAES guidance will be essential, for example 
Pragmatic Trials, Low Interventional Studies
Distinguish between designs for Hypothesis-testing and 
Estimation
N d t bl f h Ob ti l St dig y q

definitions for interventional and non-interventional studies, 
and alignment between study design options and adherence to 
Good Clinical/Pharmacovigilance/Pharmacoepidemiology
Practice.

Background

g p , y
PAES

 Aim for consistency of requests

Study Designs and Good Principles

Need acceptable process for how Observational Studies 
can be conducted and clarification of what regulatory 
processes need to be followed
Key principles for Design considerations (matching 
procedures; handling missing data; analysis methods 
including sensitivity analyses)
Considerations for Prospective versus retrospective

A post-authorisation efficacy study (PAES) is a study that 
aims to clarify the benefits of a medicine on the market 
including efficacy in everyday medical practice.  Guidance 
on how these studies should be carried out is under 
development, by a rapporteur working group set up in July 
2014.  This can support voluntary and imposed PAES

Observational Studies 
(“Non‐Interventional 

studies”)

GPP

Considerations for Prospective versus retrospective 
study designs, aligned with availability and quality of 
data sources
Could forthcoming guidance aim for an equivalent of 
ICH E9 taking into account the different study designs, 
data sources and analysis and reporting considerations 
required for PAES?

Zs

pp y p

Next Steps:  Draft guidance for public consultation 
expected Q2/3 2015 for 3-month consultation.  PSI 
(including the SIG for real world studies), and EFSPI, are 
keen to collaborate to optimise the final document.  Do 
contact the authors, or Hermann Huss [Hermann-

Pragmatic 
trials

GCPLarge 
Simple 
Trials

Low 
Interventional 

TrialsPAES Not a New Concept

Prior to Delegated Regulation (DR) (EU) 357/2014 
separate legal frameworks existed for PAES:
Conditional Marketing Authorisation (MA) , [

josef.huss@bayer.com] if you have experience or interest 
in supporting the PSI working group.

References

EMA website, top-level info and PASS info
http://www ema europa eu/ema/index jsp?curl=pages/regulation/

Presented by: Emma Du Four
Role, Organisation: EFPIA/AbbVie
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Conditional Marketing Authorisation (MA)
MA in exceptional circumstances
MA for Advanced Therapy Medicinal Products
Paediatric use of a medicinal product
Referral procedures General Methodological Considerations

Agreement recommended between sponsor and http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/
document_listing/document_listing_000377.jsp&mid=WC0b01ac
058066e979

Slides Jane Moseley Jan2015
http://www.ema.europa.eu/docs/en_GB/document_library/Presen
tation/2015/03/WC500184245.pdf

PAES Delegated Regulation (EU) 357/2014 may be 
required for centrally or nationally authorised products 
either:
At the time of granting the marketing authorisation 
(concerns relating to some aspects of the efficacy of the medicinal 
product are identified and can be resolved only after the medicinal 
product has been marketed)

g p
regulator covering:
 Proposed study design
 Path to interpretable and useable results (sufficiently 
addressing the uncertainty in question)

Further considerations
E l ti l i ti l t i MAA

Presented at the 2015 PSI Conference, London, UK

October 2013 PAES Workshop 
http://www.ema.europa.eu/docs/en_GB/document_library/Minute
s/2013/11/WC500155692.pdf

product has been marketed)
After granting the marketing authorisation
(the understanding of the disease or the clinical methodology or the 
use of the medicinal product under real-life conditions indicate that 
previous efficacy evaluations might have to be revised significantly)

-Early proactive planning versus reactive later in MAA
-Role of scientific advice
-Interacting with other stakeholders
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Increasing the Efficiency of Early Phase Decision 

Making Studies by Using ACRn within a Bayesian Framework 
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1 UCB, 2 Veramed 

Introduction

ACR20 is, undoubtedly, the gold standard for assessing efficacy in 

diseases with an arthritis component such as rheumatoid arthritis 

(RA) and psoriatic arthritis (PsA). However, despite its considerable 

discriminant ability for detecting efficacy of treatment and, its ease of 

interpretation, there are significant drawbacks. The first is that ACR20 

is a binary measure that lacks sensitivity to small changes and 

therefore studies that are powered to detect a difference in ACR20 

typically require a large sample size. Secondly, ACR20 is unable to 

measure large improvements at an individual level and although this 

can be addressed by using ACR50 or ACR70, these endpoints are 

often less sensitive than ACR20 and, thus, require many more 

subjects in the study. In addition the wealth of information from 

historical studies enables the use of Bayesian methods, which may 

further reduce sample sizes. 

 

Figure 1. Relationship of ACRn with ACR20/50/70 
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1.Cohen J. (1983) The cost of dichotomization. Applied Psychological 

Measurement 7(3):249–253. 

2.Di Scala LK., Kerman J., Neuenschwander B. (2013) Collection, synthesis, 

and interpretation of evidence: a proof-of-concept study in COPD. Statistics in 

Medicine 32:1621-1634.  

3. Neuenschwander B., Capkun-Niggli  G., Branson M., Spiegelhalter D. (2010) 

Summarizing historical information on controls in clinical trials. Clin Trials 7: 5-18 

4. Walley RJ., Birch CL., Gale JD., and Woodward PW.  Advantages of a wholly 

Bayesian approach to assessing efficacy in early drug development: a case 

study. To appear in Journal of Pharmaceutical Statistics. 
 

Objective 

• Reduce the number of subjects in early RA/ PsA 

studies by:  

 Using an endpoint that is sensitive to change 

while keeping the clinical relevance of 

ACR20/50/70 

 Using prior information from other similar studies  

 
ACRn 
ACRn is a continuous endpoint characterizes the percentage of 

improvement from baseline that a patient has experienced across a 

number of core measurements and relates directly to ACR20, 

ACR50, and ACR70 responses. 

Relationship  between ACRn and ACR20/50/70: 

• If ACRn>=20% then the patient is ACR20 responder 

• If ACRn>=50% then the patient is ACR50 responder 

• If ACRn>=70% then the patient is ACR70 responder  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Why using ACRn instead of ACR20/50/70 can 

reduce the sample size?

ACRn as seen previously is a continuous endpoint and by 

dichotomizing it we can calculate the ACR20/50/70 scores. Cohen et 

al (1983) have shown that  in general if we dichotomize a continuous 

endpoint we lose power and so the number of subjects required in a 

study is increased. The amount of increase is mainly dependent on 

the cut-off point that is chosen (i.e. 20%, 50% or 70%). Figure 2 

illustrates how the sample size required in a study for detecting a 

treatment effect increases when we use ACR20/50/70 as compared 

to ACRn. For illustration purposes, we have set the false negative 

and false positive rate to 20% and 5%, respectively (for a 2-sided 

test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please note that since ACRn is not normally distributed, for 

calculating the sample size  and the power of a test, we have 

performed a transformation to achieve normality. This transformation 

is ACRnt =log(100-ACRn). 

Figure 2.  Comparison of the ACRn and ACR20/50/70 endpoints 

based on the number of subjects required  in a study for detecting a 

range of treatment effects 

Bayesian approach to relevant historical data 
Often at the start of a study, literature or in-house summary data are 

available that are relevant to placebo (or active comparator) 

response in the new study.   These data come from historic studies 

with a similar study population and protocol to the current study.  

Traditional statistical approaches ignore this information, arguably 

leaving to the individual to synthesize information from the current 

study with the historical studies in an ad hoc manner at the end of the 

study. 

Building a prior 

At UCB we have adopted the Bayesian Meta-Analytic Predictive 

(MAP) approach described  in Neuenschwander et al  (2010) and Di 

Scala et al (2013) to summarise historical data and build a prior 

distribution that will be integrated in the design of Proof of Concept 

studies, as well as in the analysis of the new study data. Informative 

priors are constructed for the placebo response or the active 

comparator (and not for the treatment difference, nor the  

experimental drug arm) and are used  for internal decision making 

only.  

In the case of limited historical information available where the study 

to study variability is not easy to estimate and therefore not possible 

to use the MAP approach, we suggest an arbitrary discounting of the 

prior information to account for study to study variability. Two 

examples are: 

• Normal case: inflate variability by 2*SEM  discounted prior 

reduces the effective sample size by 75% 

• Binary case: Beta(a/4,b/4)   discounted prior reduces the 

effective sample size by 75% 

Bayesian design and decision making 

Sample size determination: Choose the sample size large enough to 

ensure that the trial will provide convincing evidence that treatment is 

better than control based on a chosen success criterion (see Walley 

et al.). This is: 

• Success criterion S: Pr(δ > z|data) >  1-α 

• Sample size such that Pr(S| δ = δ*)  > 1-β  

Decision making 

Once the data from the new study are available, the decision criteria 

applied are the same with the ones defined at the design stage. The 

priors remain the same or updated to include new information. 

Regarding the model, the same or  a more complex model can be 

used than the one used at the decision making stage. 

 

 

Application 

Introduction to the study design: 

 Phase 2a multiple dose study in psoriatic arthritis  assess 

safety, tolerability and efficacy 

 Efficacy analysis based on pooling subjects from placebo and top 

3 dose levels. 

 Primary efficacy endpoint: ACRn response at week 8 

 Efficacy study decision criteria 

1. Pr(δ > 0|data) >  97.5% 

2. Pr(δ > 0.31|data) >  70% 

Optimizing the quality and cost: 

 The target efficacy was based on ACR20 and we have translated 

this to ACRn to take advantage of the good properties of the 

continuous endpoint and so reduce study size by  23 subjects 

 We have used internal historical placebo data from a similar 

inhouse study to form the prior distribution for the placebo effect . 

Doing so we have replaced placebo subjects from the study with 

‘pseudo’ subjects from the prior   further reduce study size by  

34 subjects 

 Design operating characteristics 

 

Figure 4.  Total sample size  required for different endpoints 

assuming both a Classical and Bayesian framework 
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Conclusion 

• Using continuous endpoints (such as ACRn) as the 

primary endpoint rather than established binary 

endpoints and incorporating historical information by 

following the Bayesian paradigm, the sample size is 

reduced resulting in: 

• Lower study cost 

• Faster recruitment 

• The use of continuous endpoints together with 

Bayesian methods are now routinely considered for 

early phase studies to increase efficiency  

Other applications 
Since the application of the methods described here for RA and PsA, 

the use of a primary continuous endpoint rather than established 

binary endpoints within a Bayesian framework is now routinely 

considered for many other therapeutic areas in the early phase group 

at UCB.   

 

Where it is not possible to use an alternative continuous endpoint, 

the Bayesian approach may still be applied to the binary endpoint 

and lead to a reduction in sample size and/or a decrease in error 

rates. 

Patient 1 Patient 2 Patient 3 

ACRn 19% 69% 90% 

ACR20 Non 

responder 

Responder Responder 

ACR50 Non 

Responder 

Responder Responder 

 

ACR70 Non 

responder 

Non 

responder 

Responder 

 

Table 1.  Individual examples of the relationship between ACRn and 

ACR20/50/70 

Figure 1 illustrates the relationship of the population median ACRn 

with the ACR20/50/70 responder rate. 
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If effective If Ineffective 

Probability of 

the decision 

being: 

No-Go 9% 97.5% 

Pause 11% 2% 

Go 80% 0.5% 

Therefore, ACRn: 

 maintains the clinical relevance  

 can account for both large and small clinical improvement  

 is more sensitive to change 

The reasons above make ACRn an appealing alternative endpoint 

for many situations such as: 

 head-to-head comparison of two products, 

 assessing risk/benefit of a drug,  

 dose optimisation  

 early proof-of-concept studies with limited resources. 
 



First Experiences in Observational Research – A Statistician’s Perspective
Chris Toffis

Depending on the period of interest, observational studies can be either 

prospective, retrospective or (partly) both.

Prospective

The period of interest aligns with the present and data is collected as it is

generated.

Pros

• Able to follow patients in real‐time.

• Can define data to be collected and query inaccurate information.

Cons

• Period of interest must finish in order to have the data: expensive and

time‐consuming.

• Susceptible to observation bias.

An observational study is a study in which conditions are not under the

control of the researcher. In particular, the exposures or treatments of

interest are not assigned at random to experimental units by the

investigator. In the pharmaceutical industry observational studies are

increasingly performed to characterise and demonstrate the clinical value

of drug products in real world populations: to assess comparative

effectiveness of two or more medications, to continually evaluate the

risk:benefit profile of medications and for post‐marketing safety

monitoring and evaluation.

There may be instances when an observational study would be more

appropriate as opposed to a randomised clinical trial:

Violation of ethical standards

Hypothesis: Smoking causes lung cancer.

• In theory, to test this hypothesis individuals would be randomised to

smoke or not to smoke then followed to subsequently determine the

effect of smoking on lung cancer. This would be highly unethical

experimental practice. An observational study can determine if an

association exists between smoking and lung cancer by observing the

smoking status of those individuals with the disease.

Rare events

• If we wanted to investigate the link between a certain medication and a

very rare group of symptoms the pool of subjects for investigation

would be very small. An observational study could identify a group of

symptomatic patients and use historical information to ascertain if

there is a relationship between the medication and symptom.

In this poster I discuss 3 observational studies I have been leading during

the first 18 months of my biostatistical career at Amgen: one fully

retrospective study investigating the effects of switching from our IP to a

biosimilar, a prospective study examining persistence rates of our IP and a

part‐prospective/part‐retrospective study investigating the effectiveness

of a new dosing regimen for our IP. I present some challenges faced in

each and the methods employed to overcome them.

Data Inconsistencies

Missing data and data inconsistencies are common in observational

studies. If there appears to be a systematic flaw in measuring exposure

or outcome variables this will lead to information bias. An example of a

data inconsistency that could not be resolved through query in my

part‐prospective/part‐retrospective study is exhibited below:

There are two scenarios: a) the treatment was not stopped and the

reason of ‘Other’ was entered erroneously or b) the treatment was

stopped but the site entered ‘No’ instead of ‘Yes’. Which scenario is

correct? The following possible options were considered:

1. Identify other information that would support treatment

continuing, for example dosing data, and if present assume the

correct response is ‘No’.

2. If no other supportive data is available, assume the worst case

scenario relevant to the study outcomes i.e. assume the correct

response is ‘Yes’.

3. Treat response as ‘missing’ to avoid the inconsistency contributing

to the analysis

4. Use the response given ‘as is’ but qualify the uncertainty in a

footnote.

Fundamentally, whichever approach is taken, some information has

been lost and thus the correct measurement of the exposure may not

be accurate.

Observation Bias

This form of bias is generally unavoidable for prospective studies . One

of my studies investigating persistence of subjects using our IP is fully

prospective. The study was designed to ensure that clinical practice of

enrolled subjects was as close to routine as possible, to minimise any

differences in care that may impact the outcomes of the study.

Selection Bias

Selection bias may have been introduced on my fully retrospective

study. Certain lab values were ‘censored’ in the analysis due to the

perception that they were artificially inflated following an external

process (received by some subjects purely at the investigator’s

discretion). A sensitivity analysis was conducted including all lab values

to assess the impact of the external process on the final results.

Confounding

Patient characteristics are often used to inform treatment decisions

which may confound the relationship between exposure and outcome.

Failure to account for such variables may bias the estimates of

treatment effect. Our analyses were designed to investigate the

influence of factors such as age and diabetic status on the outcomes of

interest (lab parameter over time/in a specific range or persistence).

the treatment

Retrospective

The period of interest exists wholly in the past.

Pros

• Not affected by observation bias.

• Data can be procured ‘now’: cost‐ and time‐efficient.

Cons

• Data can be incomplete – generally have to accept ‘as is’ even if missing.

• Limited to data collected per routine clinical practice during period of

interest.

Part Retrospective/Part Prospective

A hybrid of the two scenarios above. This type of observational study

could be used if we wanted to monitor the effect of a change which has

occurred – we collect data in the ‘pre’ period and follow up with data in

the ‘post’ period.

Challenges

Acknowledgements: Lucy DeCosta (Amgen Ltd)

GlossarySummary
Confounding Variable – an extraneous variable in a model that correlates with both the dependent variable

and the independent variable of interest

Information Bias – distortion in effect estimation that occurs when measurement of either the exposure or

the outcome is systematically inaccurate

Observation Bias – Subjects and investigators taking part in a study may alter their behaviour as a result of

knowing they are being observed

Selection Bias – refers to the systematic omission of individuals, groups or data for analysis thereby ensuring

that the sample obtained is not representative of the population intended to be analysed.

• Observational studies play a significant role in real‐world evidence generation.

• Depending on the period of interest, different types of data collection can be

considered.

• Many sources of bias are inherent to observational studies.

• Results of observational studies often confirm those reported in randomised

controlled trials or generate hypotheses for further research.



Introduction

• Type 2 diabetes mellitus (T2DM) accounts for 90-95% of all diabetes patients. These individuals are 
characterized with insulin resistance and/or insulin deficiency. 

• FDA called for assessment of cardiovascular (CV) risk for non-insulin therapeutics for T2DM. Asked 
that hazard ratio (HR) of treatment compared to control be < 1.8 in pre-market evaluation (122 
events, two-sided, α=0.05) [1]. Further, guidance suggested additional data collected post-market to 
show HR of Major Adverse Cardiovascular Event (MACE: CV death, nonfatal myocardial infarction and 
nonfatal stroke events) be < 1.3 (611 events, two-sided, α=0.05). 

• Figure 1 displays the α-spending functions for a hypothetical sequential trial using OBF-like 
boundaries. 

• Reviewed drugs approved by U.S. FDA to treat T2DM during 2002-2014. Main objective was to 
understand the impact of FDA guidance on assessment of CV risk in T2DM development programs.

Conclusions

• Lot of similarities in approaches taken and subsequent analyses for T2DM programs thus far.

• Balance between evidence on CV safety and excessive delay of novel therapies.

• Access to interim data critical for CV assessment strategies. Releasing interim data when full approval
granted (Stage 1) can undermine integrity for ongoing CVOTs. Guidance and buy-in from other
regulatory agencies needed.

• Questions yet to answer: Can stop CVOT early? Post-market studies to assess CV risk instead of CVOT?
Active-controlled CVOTs? Possible for indirect comparisons for CV risk among T2DM products?

• Additional details on this topic found in [2].

References
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Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes.
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ASSESSING THE CARDIOVASCULAR RISK OF ANTI-DIABETIC THERAPIES IN PATIENTS 
WITH TYPE 2 DIABETES MELLITUS

Richard C. Zink, JMP Life Sciences, SAS Institute on behalf of the ASA Biopharmaceutical Section Safety Working Group: 
Aloka Chakravarty, Christy Chuang-Stein, Qi Jiang, Chunlei Ke, Haijun Ma, Jeff Maca, Olga Marchenko, Estelle Russek-Cohen & Matilde Sanchez-Kam

Figure 2. Drugs for Type 2 Diabetes Approved by the FDA up to Jan 2014

Methods

• Majority of information taken from www.clinicaltrials.gov, advisory committee materials, and
Drugs@FDA: FDA Approved Drug Products.

• Review included drug name and class, initial US NDA submission and approval dates, initial MAA
submission and approval dates, and strategy to address CV risk.

• Details on pre-marketing meta-analysis such as primary endpoint, whether prospectively adjudicated,
study population, size of database, statistical hypotheses and methods, primary outcome, subgroup
analyses, and major issues identified in FDA briefing documents.

• Details from CV outcome trial (CVOT) included whether initiated to address post-marketing
commitment and/or contributed to pre-marketing CV analysis, study design, population, treatment
groups, sample size, duration, primary endpoint and how adjudicated, primary objectives,
completion date, and primary outcome.

Results

• CV risk assessment population typically consists of all randomized patients who received at least one
dose of double-blind study therapy.

• For NME, CVOT usually required. Many sponsors started studies during late phase 3. Products whose
individual components have been or currently evaluated for CV risk exempt from CV requirements.

• At NDA submission, sponsors typically proposed to conduct CV meta-analysis (MA) that included
completed phase 2-3 studies. Because MA at submission stage, development programs often
included plan to prospectively adjudicate CV events. In some cases (canagliflozin, alogliptin), MA
included interim data from CVOT.

Results

• Cox proportional hazard models stratified by study were often the primary analysis method for more
recent MA.

• CMH methods treating endpoints as binary often used as sensitivity analyses. MH and CMH methods
stratified by study used as primary analysis for earlier submissions. Extensive subgroup analyses, pre-
planned and ad hoc, conducted with consistency of results examined.

• Requirements at post-approval stage may include another MA including completed phase 2-3 studies
plus CVOT; or analyzing CVOT as stand-alone study if planned with enough events.

• CVOTs designed as large, randomized, double-blinded, placebo-controlled in T2DM patients with high
CV risk. T2DM drugs where development program was designed and/or completed but drugs not yet
approved prior to FDA guidance held to same standards. FDA proposed post-hoc evaluations of CV
events collected during development (liraglutide, saxagliptin hydrochloride, and exenatide XR).

• Steady increase in number of treated subjects included in pre-marketing CV risk assessment since
2008 (Figure 2). Observed two strategies to assess CV risk since the guidance.

• Substantial similarity in CV endpoints, adjudication, population, and statistical methods across recent
CVOTs. No substantial delay in time between submission and approval due to addressing CV risk in
recent programs. Did not review duration of development programs to determine if increased from
first study in human to regulatory submission. All completed CVOTs ruled out HR > 1.3.

Figure 1. Cumulative α for Hypothetical Sequential Design Across Two 
Recommended Stages for T2DM
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