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The Emax model is now a well-established technique for assessing the dose response relationship for a new drug :
during early phase clinical trials. Through Emax modelling it is possible to estimate the maximal treatment effect, 100 s \ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" '
the dose which produces 50% of the maximal effect and the placebo effect. The 3-Parameter Emax model has the — Emax
following equation: :

Emax x dose

d,0) = EQ— + additional effects
A ) dose + ED50 I
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Where EO is the effect in the absence of treatment, ED50 is the dose which gives 50% of the maximum effect and
Emax is the maximum effect. These are displayed graphically in figure 1.
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Bayesian analysis enables us to incorporate historical data into our statistical models. The availability of historical Q~

data gives justification for a reduced sample size. In early phase clinical studies this is often not applicable to active 0 >0 100
treatment groups, however it can be applied to the control group, especially in disease areas where a number of Dose

clinical trials have already been performed. This is crucial to the Emax model, and specifically the EO term. Figure 1: The 3-Parameter Emax curve

Analysis Programming

Programming can be performed in WinBUGS or R, however we have used the MCMC procedure in SAS. The following

Before starting the analysis the desired model should be fully| | . o~ _ .
is example code from an Emax model with two additional continuous covariates.

parameterised. EO is not the only parameter which should be assignhed a

prior distribution. Emax should be given a normal prior, precision (1/
variance) a half-normal prior and ED50 a Beta prior. The coefficients for any | | Proc mcmc data=datal|nbi=10000 nmc=5000000 thin=50 seed=10524 |~ Simulation

additional effects should also be assigned relevant priors. Unless validated monitor=(el edol emax sigma coelll coerf’ specifications
prior information is available these prior distributions should be non- gozig 29;255013;?%20013;?2(1)OgoselOO \
informative. Therefore high standard deviations for normal distributions = = = - ) Parameters of

stats(alpha=(0.1)) plots(smooth)=all ;

and a and b values of <1 for Beta distributions. interest
To ensure the model coefficients are being drawn from a converged parms precision x1;
distribution it is recommended to discard an initial proportion of the parms el X2;
simulations. The number of simulations to be run should be specified as well parms ued>0 x3; Starting values
as any thinning rate. Starting values and a seed number will fix the point of parils cliax x4;
the initial simulation and allow replicable results. The seed number can be parms coeffl X7
parms coeff? X6;

randomly generated independently. In general starting values should be

logical, for example the minimum response for EO, the maximum response orior precision ~ normal (0, sd=100, lower=0);
for Emax. prior e0 ~ normal (0, sd=0.5);
Model suitability can be assessed by examining diagnostic plots. Trace plots prior uedsO ~ beta(a=0.5, k_):O :9) Prior distributions
of the simulation means should be a random scatter, representative of white priot chax ~ normal (0, sd=100);
: . .. L . prior coeffl ~ normal (0, sd=100);
noise. Low autocorrelations indicate a smooth distribution. High .
, , ) L , prior coeff? ~ normal (0, sd=100);
autocorrelations are symptomatic of ‘clumps’ within your simulated samples
and should be removed through thinning. The shape of the posterior density beginnodata;
curve should be representative of the expected distribution. diff5=((e0 + ((emax*5) / (5+ed50)))) - (e0);
_ diffl15=((e0 + ((emax*15) / (15+ed50)))) - (e0); Calculation of treatment
diff50=((e0 + ((emax*50) / (50+ed50)))) -(e0); comparison estimates
diffl100=((e0 + ((emax*100) / (100+ed50)))) - (e0);

-0.5

N sigma = sqgrt(l/precision);
CI) 1005000 2OO(I)OOO BOOCI)OOO 400(5000 SOO(IJOOO e d5 O — ue d5 O * 3 0 0 ; ¢ conve rt EDSO from proportion to dose
oo Iteration endnodata ;
%00. é mu = e0 + (emax*dose) / (dose+edb50) + coeffl*parml coeff2*parm?2; Model
¢ o - | equation
od. | | | | | , | | l | model response ~ normal (mu, sd=sigma) ;

0 10 20 30 40 50 -1.0 -0.5 0.0 0.5 1.0

Lag e0 run ;

Figure 2: Example of ideal diagnostic plots

Discussion and conclusions

Introducing Bayesian inference to the Emax model gives us the opportunity to achieve more reliable responses from our dose-response studies with less data. Through SAS proc MCMC, not only can
we calculate the terms of the Emax model but we can also adjust for any additional effects and compare the posterior samples to establish individual dose effects and differences. Therefore this
approach can give comprehensive insight into drug efficacy as well as identifying the most effective dose. Detailed specifications for model parameterisation is key, as with any Bayesian analysis
there is more than one possible result. Therefore early thinking and anticipating the potential pitfalls will lead to a more efficient analysis.

In this poster we have only discussed the 3-parameter Emax model, however adaptation of this approach to the 4-parameter is possible. The 4-parameter Emax model introduces a slope factor which
allows for greater flexibility over the shape of the Emax curve.
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1.0 + Censored

Introduction

Censoring At Random (CAR) Is a necessary assumption in most 0.8
common time-to-event (TTE) analysis techniques used for clinical

Pattern Mixture Modelling

If censoring at random is assumed not to hold, then the reasons for
censoring may provide information about the likely time to event.

trials, including Kaplan Meier analysis, Cox regression and the log- S o6 Consequently, it may be desirable to reflect this in a ‘realistic’
rank test. However, it is also a strong assumption that is not likely to § sensitivity analysis. This is achievable using KM imputation by
be that realistic in many cases. g ., borrowing the concept of pattern mixture modelling from longitudinal
5 data analysis.

In this poster, we present a set of three related sensitivity analyses

around the assumption of CAR in TTE data. These approaches are 02 Patients may be assigned to patterns according to e.g. reasons for
based around Kaplan Meier (KM) imputation, a method analogous g — S — discontinuation. Each pattern may then be imputed using different
to that of multiple imputation in longitudinal data. In each method, 0.0 | kL rules to reflect likely post-discontinuation behaviour. These rules are
adjustments are made to the imputation procedure to reflect 0 250 500 750 1000 1250 implemented by allowing each treatment within a pattern to be
assumptions about the likely or assumed behaviour of patients after Time in days imputed using the KM curve of either treatment, and with a specified
censoring. e R Deltat e R Deltazs delta adjustment. For our example data, we provide a complicated

Treatment=R Delta=3

Treatment=R Delta=1

analysis based upon 4 patterns, with patterns and rules defined in
Table 2.

Figure 2 Kaplan Meier curves for the example data imputed using unadjusted and
delta adjustment (6=3) Kaplan Meier Imputation methods. The two curves for treatment
R are identical and overlay.

Reference-based Imputation

Throughout, a set of Progression Free Survival (PFS) oncology
data is used to demonstrate the real-world application of these
methods. This comprises 345 patients with 99 censorings (28.7%)
across two treatments; active Treatment A and reference Treatment
R. Analysis Is presented based upon both the Cox Proportional
Hazards model and the Log Rank Test. Results are given for an
unstratified analysis. In all cases, 100 imputations are performed.

Kaplan Meier Imputation

Kaplan Meier imputation is a multiple imputation technique that uses
KM curves to define the imputation distribution. Bootstrapping Is
used to derive a separate data set for each imputation. This
provides a more accurate estimation of the variance after
Imputation. KM curves are then created for each treatment within

For pattern 1, patients starting a new therapy, the active treatment is
reference-imputed with an additional penalty as censoring may
reflect their deteriorating health and they may start an inferior
treatment. The reference treatment is imputed normally. Pattern 2 is
Imputed assuming censoring at random as there is no indication of
worsening health being associated with their censoring. Patterns 3
and 4 are imputed with penalties to reflect that these patients were
known to progress/die but were censored as it was not possible to
obtain an accurate time of progression/death.

A novel method of testing the robustness of the CAR assumption is
reference-based imputation whereby patients who discontinue from
the active treatment are assumed to behave like the control upon
dropout. Where the active treatment is more effective than the
reference, the impact of this is usually to increase the event rate for
the active treatment arm.

To implement this by KM imputation, the KM curve of the reference
arm iIs used to impute censored observations from both the active
and reference arms. The reference arm is therefore imputed

each bootstrapped data. For each censored observation, the . . . 1(61) Newtherapy = Treatment R 2 Treatment R 1
. . - normally. As an example, Figure 3 shows the effective survival
appropriate KM curve is then rebased to a probability of 1 at the . . ; . |
. . . function used to impute the active treatment censoring at day 207. A 2(30) No progression  Treatment A 1 Treatment R 1
time of censoring. A random draw Is then taken from a standard . . & censored
. S . . . similar curve could also be constructed for each other active
uniform distribution and used to impute an event time using the reatment Censorin 3(6) L T——— 5 Treatment R 5
following rules: The time corresponding to that probability from the J progression
KM curve is taken the imput vent time. If the pr ity | . L 4(2) Missing data Treatment A 3 Treatment R 2
curve is taken as the imputed eve © e probability is KM curves for imputed data can be found in Figure 4, and the then death

lower than any in the KM curve, then the imputation is a censoring
at the time of the last event. For censored observations after the last
event in the KM curve, no imputation is performed.

summary statistics for this approach are shown in Table 1. . . |
Table 2 Summary of reason for dropout patterns and the associated imputation rules

o for an example scheme. Curve columns give the treatment curve that is to be used for

0o Imputation. Delta columns give the value of delta to be applied to each curve.

This method has been previously shown to reproduce the KM
estimator (1), To test our implementation of the method, we
compared the results from the imputed and original data (see Table
1 for results) using the Cox Proportional Hazards model and the Log
Rank Test.

08 KM curves for the imputed data may be seen in Figure 5 and

07 summary statistics in Table 1. Unlike the previous method, both
curves show systematic deviation from the unadjusted imputation
curves towards worsening PFS.
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The statistics can be seen to be very similar between the two data
sets. The KM curves for the imputed data (not shown) also closely 0.3 0.8
follow those from the original data. The one difference is the log .

rank statistic (although the corresponding p-values are comparable).

This Is due to both the statistic itself and its variance being directly h b \—\
dependent upon the number of events. Further work has 0.0
demonstrated that if a complete data set is randomly censored and

then imputed, the log rank statistics for the complete data and the Group
Imputed data are very similar.
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Figure 3 The Kaplan Meier imputation curve for a censoring in the active treatment
arm at day 207 (vertical line). The reference and active treatment KM curves are
shown for comparison.
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Delta Adjustment

To test the robustness of conclusions to the CAR assumption, delta
adjustment may be used (2,3). This is the use of a fixed penalty, 0,
to reduce the expected time to an event after censoring for the
active treatment arm. To implement this with KM imputation, all

1.0 0.0

+ Censored
0 250 200 750 1000 1250
Time in days
0.8

Treatment=A Method=Pattern
Treatment=R Method=Pattern

Treatment=A Method=CAR
Treatment=R Method=CAR

probabilities for the active treatment curve are adjusted to the power ;—‘E e Figure 5 Kaplan Meier curves for the example data imputed using unadjusted and
. . . S - attern mixture Kaplan Meier Imputation methods.
of 8. The CAR case corresponds to =1, while 8>1 is penalising and ¢ P Xt P ler Imputat
<1 iIs beneficial. Figure 1 shows the impact of applying different = - - :
o~ 19 beneticial. Floure - pact of applying s . Discussion and Conclusions
' 7
For the example data, a sensitivity analysis was performed with a 0.2 This poster has demons_,trated methods for performing =en sitivity
value of delta of 3 for treatment A, corresponding to considerably - e anal;ises flor _theT%ensorlngthatdrandom I(CAtI)Q) aSSngUCC)Ig in time-to-
higher probabilities of events occurring soon after censoring in the | | — event analysis. 1hese methods may also be used to address
active arm. The resulting KM curves may be found in Figure 2, with 0.0 estimands that account for treatment discontinuation or treatment
. ’ 0 250 500 750 1000 1250 Switch | ng ]

summary statistics in Table 1.

Time in days

Treatment=A Method=Reference
Treatment=R Method=Reference

Treatment=A Method=CAR

T e Mothoge AR A key strength of these methods is they only require simple and

Despite this high degree of penalisation of censoring in the active
treatment, the resulting analysis still shows statistical significance.
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Figure 4 Kaplan Meier curves for the example data imputed using unadjusted

(Censoring At Random, CAR) and reference-based Kaplan Meier Imputation methods.

transparent assumptions that can be easily translated to and from
clinical understanding. They also allow for a more realistic middle-
ground between accepting CAR and imputing censorings as events
on the day of censoring.

For the example data, all sensitivity analyses produced 2-sided p-

07 340 days 340 days 330days 330 days 318 days values considerably below 0.05, and consequently the original
z o T ST T T T conclusion of S|gn_|f|cance can be_ considered rpbust to deviations
£ from the assumption of CAR. This robustness is caused by the
E ” e -. AT PIEES N YETE DG extremely significant p-value from the original analysis and is
g 04 i b e, (0.428,0.762)  (0.414, (0.467, (0.451,0.797) (0.453,0.795)  despite the large deviations observed in the sensitivity analyses.
T e 0.755) 0.844)
0.3 -3.81 -3.80 -3.09 -3.53 -3.57 . .
N (0.0001) (0.0002) (0.0021) (0.0004) (0.0004) AI_I methods have been implemented using _standard SAS code and
| It Is hoped to make the programs available in the near future.
0.1 3
- L ~. -23.1 -35.3 -29.5 -31.8 -32.0 References
. et SO (-34.9,-11.4)  (-52.9,-17.7) (-47.8,-11.3) (-49.1,-145) (-49.2,-14.8) —— —
U 1) TaylorJ M G., Mur.ray S, Hsu C Statlstlcs.and .Probal?lllty Letters.2002,
T e 58 221-232: “Survival Estimation and Testing via Multiple Imputation”.
y -3.86 -3.95 -3.17 -3.61 -3.65 , SN ) e
Delts - -c-- 0E ‘O o 10 oo 100 2) O’ Kelly M, Lipkovich I; 2014 PSI Conference presentation: “Using
- | - - (0.0001) (<0.0001) (0.0016) (0.0003) (0.0003)

Figure 1 Kaplan Meier curves derived from the active treatment arm (A) of the
example data that are used for imputation of censored data using the delta
adjustment method. Curves are shown for 6 = 0.5, 1, 3 and 10.

Table 1 Summary statistics for the example data set using all methods described.

Multiple Imputation and Delta Adjustment to Implement Sensitivity
Analyses for Time-to-Event Data”.

3) Zhao, Herring AH, Zhou H, Ali M W, Koch G W: J Biopharm. Stat.,
24(2):229-253, 2014. “A multiple imputation method for sensitivity
analyses of time-to-event data with possibly informative censoring.”
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Introduction

NEWSFLASH: STATISTICS INVOLVED IN PLANNING OF END OF RECRUITMENT AND INTERIM ANALYSES!

The cost of drug development for pharmaceutical companies continues to Figure I. Average Cost to Develop One New Drug predict when the study recruitment will be completed or when the
increase. In a world where it is harder to find compounds and get them %““‘”“' $1,300 Interim Analysis will occur.

marketed, it is increasingly important to decrease the cost of drug g:”m - Using simulation in SAS and known distributions for recruitment (Poisson
development but also to reduce the duration between when a compound ¥ o ; distribution), for survival data types (exponential, log normal or Weibull
is discovered to the time it is marketed. The aim is to bring better and § 5o distribution) with maybe just a sprinkling of Bayesian can enable us
safer treatment to patients. What are pharmaceutical companies doing to : N 200 statisticians to provide the team (and the stakeholders — never forget
better manage their clinical trials? P wm | | | them) with the estimated date of interest and the most important part -
Some very innovative companies involved the use of statistics to try and T B confidence intervals!

MAGIC STUDY TO DATE: Recruitment: Poisson Distribution
158 RANDOMIZED

T — It ™ s o S il W O s e s S L ———

Death: Exponential, Log-normal or

) CONTACT THE STATISTICIAN! | | o 67 DEATHS Lol dictribus
—————— | NEED TO KNOW WHEN WE WILL  Dear Statistician, A AFTER 200 DEATHS | | Vetoull distribution
| GET RESULTS FROM THE INTERIM Can you please provide |

- ANALYSIS OF THE MAGIC STUDY. ws with Hhe date and a
wien Hre lnterium
Analysns for the MAGIC
stwdy will happen .

PS: con ue hane His
uwformation at your
Upper Monagement
Team

Forecasting the Randomization Forecasting deaths Step 2: Repeat step 1 but for the time to lost-to-follow-up.

Step 1: Using current data Step 2: Using the randomization rate Step 3: Using the estimated posterior parameters of the distribution;

. For patients already randomized and still ongoing at the cut-off date,

(date of randomization), and the Poisson distribution
determine the randomization simulate the number of patients s!mulate th.e time of death and the time to Ic.)st-to-follow-up until the
rate. randomized each day until all patients I simulated times are greater than the censored times

. For patients not yet randomized at the cut-off date, simulate the date of
| randomization for each patient left to be randomized and then simulate
—— the time of death and the time to lost-to-follow-up

Subjects

are randomized (sample size).

Step 3: Repeat step 2 at least 1 000
times.

Step 4: The estimated date of when -
the last patient will be randomized is :

the median date of all the simulations.
Associated 90% confidence intervals Step 1: Using the actual data determine Step 6: The estimated date of when the nt" patient will die is the median

correspond to the 5% and 95% the time to death & posterior parameters of date of all the simulations. Associated 90% confidence intervals correspond
percentiles. the selected distribution (e.g. Exponential). to the 5% and 95% percentiles.

Step 4: Censor patients for which the simulated time to lost-to follow-up
is greater that the simulated time to death.

Days since first enrollment Step 5: Repeat step 3 and step 4, 1 000 times.

B —+-

Randomized Poisson 250 10AUG2015  (15JUN2015; 090CT2015) ,
01JAN2014 Prediction | . .
01APR2014 Prediction Death Exponential 200 18SEP2016  (15JUN2016; 08JAN2017) { The statistical methods we statisticians apply to
28AUG2014 Prediction — hi : bl d h b
Forecasting death graphs ~ wew Death Weibull 200 06AUG2016 = (11MAY2016; 24NOV2016) this very important problem do not have to be
Actual randomization o complicated nor require a large set of assumptions
Predicted randomization — Death Log Normal 200 050CT2016 (27JUN2016; 08FEB2017)

or lengthy computations. They rely on statistical
assumptions (distribution of the data).

200 200 -

- . , ——— -
Predicted Estimate (90% CI) i / : 200
100 events: OBMARZ2015 (19JAN2015, 08MAY 2015 :

G2016 (11MAY2016, 24NOV2016

We can always complicate the model with
covariates, known bank holidays and complex
distributions. But is it really worth it as no clinical
trial goes according to plan and predictions must
be adjusted several times during the study based
on the current data or additional input (e.g. new

’ 3 | " e | sites selected and opened)?
Exponential distribution Weibull distribution Log-normal distribution

Number of patients
Number of patients
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An Event Driven Respiratory Trial

Nick Cowans, Abigail Fuller, Andrew Holmes
Statistics, Veramed Limited

1. Introduction

Chronic obstructive pulmonary disease (COPD) often coexists
with other chronic diseases and comorbidities that can markedly
influence patients' health status and prognosis. This is particularly
true for cardiovascular disease (CVD).

This has led to assessment of inhaled COPD medications for
overall survival benefits, often using event driven designs.

Such designs present numerous statistical issues, including:

Predicting the common end date at which the target number
of events will have accrued.

The heterogeneity of the study population over time.
Variable follow up due to the common end date.

Missing data for secondary/tertiary endpoints following
withdrawal from treatment.

In this poster we consider these issues as they arose in planning
the analysis of The Study to Understand Mortality and Morbidity
in COPD (SUMMIT) [1].

Subjects
recruited

later

Subjects
recruited
earlier

3. Common End Date

The common end date was defined as the date at which the
number of events that the study was powered for will have
occurred. All subjects will be followed up to this date.

To allow preparation for final visits, the common end date had to
be decided in advance.

In order to do this, it was necessary to predict at what time the
desired number of events (deaths) would occur.

__ predicted number of
deaths based on different
assumptions

desired number of
events

Number of deaths

/ Date

deaths in
study to date

predicted common
end date

5. Variable follow up

"1 Year'

Maximum Possible Follow-up

'2 Years' '3 Years'

2. SUMMIT

The Study to Understand Mortality and MorbidITy in COPD

* An event driven, placebo controlled, long term, global,
randomised clinical trial to investigate the impact of
fluticasone furoate/vilanterol combination and the individual
components on the survival of patients with moderate COPD
and either a history of CVD or at increased risk for CVD.

* Secondary endpoints are rate of decline in FEV, and time to
first cardiovascular event and there are various tertiary
endpoints.

* FEV, is a spirometry lung function test that measures the
volume of air that can be expelled in the first second from a
maximum inspiration.

* |n patients with obstructive diseases like COPD, instigating
certain treatment regimes can cause an increase in FEV, at
the initial visits following baseline, following this, FEV, will
decline with time.

median death rate
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 Weekly death tracking was carried out in order to determine how

many deaths were being reported. However, deaths occurring
between scheduled contact, and other factors, meant that there
was a lag in reporting of events (see above).

Probability of death so far in the study (excluding the lag time) was
used to predict the common end date (see left).

An interim survival sweep where all subjects were followed up for
vital status at a scheduled visit or over the telephone was carried
out in order to get a more accurate sense of the true number of
deaths.

Recruitment occurred over three years, but the study ended for
all subjects on the common end date, resulting in variable follow
up amongst subjects:

* Subjects recruited later are unable to be in the trial long
enough to accumulate long term data so have less potential
follow up than those recruited earlier.

* Such censoring at the common end date unlikely to be
informative. Assume Missing at Random (MAR).

* For time to event analysis, for example for the primary
endpoint, this does not present additional issues.

* For events (e.g. Exacerbations), analyse time to first
exacerbation in preference to rate (with the latter as
supportive).

* For endpoints measured regularly (e.g. change in FEV,), use
Mixed Model Repeated Measures analyses assuming MAR,
with primary analysis of effects at 1 year.

6. On-treatment only follow up

For the primary end point of all cause mortality, survival status
will be collected until the common end date, even for subjects
who withdraw from IP, with (almost) complete follow up
expected.

However some secondary & tertiary endpoints (e.g. COPD
exacerbations, FEV,) are only followed up whist subjects are on-
treatment and undergoing regular visits:

 To assess whether withdrawal from IP is related to outcome,
and what the missing data post we considered “withdrawal
cohorts” (right).

* Missing data post withdrawal from IP unlikely to be MAR.

* |n a previous study it was shown that subjects who withdrew
were more likely to be older and have baseline characteristics
indicating poorer respiratory health (more prone to
exacerbations and lower baseline FEV,).

* Analyse rate of FEV, decline using random coefficient models,
and assess sensitivity using imputation.

veramed
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Withdrawal cohorts:
* Group of subjects who withdraw from IP at the same follow up

time.

* Plots of outcome against follow up time by withdrawal cohort

indicate that the degree of deterioration of respiratory health
throughout the study contributes to the likelihood of
withdrawal, shown in this previous, similar study:

Adapted from [3]: Subjects who prematurely

1400- withdrew from IP tended to do so once their
| FEV, had deteriorated to a certain point
13009 ---="® -~ __
Nt -, (1100ml).
- i -
Lt N -, __
E; 12'3':‘;-.:::‘_ iR R Key: each group of black dots connected with
- "- T

dotted lines represents the mean FEV, at each visit
for subjects who withdrew before the next
scheduled visit. For example, subjects in the *
group withdrew between 48-72 weeks. The blue
dots represent the mean FEV, at each visit for
subjects who completed the study without
withdrawing from IP.

I L] 1 1 1 1 1
0 24 48 72 96 120 156

Time (weeks)

* This leads to an increased likelihood that subjects who make it

to study completion are in better health than those recruited.

verdaime

Contrast with the usual respiratory trials for symptomatic endpoints:

Primary endpoint of time to death.

Long follow up (1-4) years, with Investigational product (IP)
treatment for the duration of follow up.

Event driven: follow up is until a specified number of events have
accumulated, with analysis at a common end date for all subjects.

Complete follow up for vital status up to the common end date,
even if the subject is withdrawn from IP, with negligible loss to
follow up or withdrawal from the study.

Large and multi-regional, with rolling start.

Secondary & tertiary symptomatic respiratory endpoints (e.g. lung
function, exacerbations, quality of life) are only collected whilst
subjects are on-treatment.

Due to the symptomatic relief afforded by these treatments,
withdrawal from treatment may be related to (perceived) lack of
efficacy, and may therefore be more prevalent in the placebo arm.

4. Heterogeneity of
patient population

Patient population is heterogeneous over (follow up) time as

some regions began recruitment before others but the study

ends for all on the common end date.

* Regional differences in prognostic demographic and
baseline characteristics.

Contrasts with many respiratory studies with fixed duration
follow up for all subjects.
* Danger of temporal plots being interpreted longitudinally.

To mitigate:
Guard against longitudinal interpretation of plots, especially
Kaplan-Meier curves [2].
Primary analyses of repeated measures endpoints at 1 year.
Include known prognostic factors in models and present
adjusted plots (e.g. LSMeans for baseline OBSMARGINSs for
change in FEV,).

7. Summary

* |n contrast to conventional fixed duration
respiratory trials, event driven trials can reduce
the length of the study for the primary endpoint.

 However, they add further complexity, especially
when dealing with secondary and tertiary
continuous endpoints such as FEV, over time or
rate of exacerbations, which are only collected on
treatment.

* |tis difficult to predict the analysis date (common
end date) accurately.

* Heterogeneity of patient population over time
must be considered when making longitudinal
inferences.

* Censoring due to the common end date can be
considered missing at random but censoring due
to withdrawal from treatment can not.

* Withdrawal cohorts are useful for assessing likely
patterns of missing data.

* Explanation of event driven trial difficult in setting
where fixed duration is considered the norm.
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Ensuring the quality of your data in Respiratory
trials: Data management from a statistical

standpoint veraline

1. Abigail Fuller, Statistician, Veramed Limited
2. Nick Cowans, Statistician, Veramed Limited

1. Introduction 2. Measures of Interest

FEV, Rate of Decline Rate of exacerbations
Large, global late phase studies inevitably involve huge
amounts of data of varying quality. Data frequently needs Rate in decline FEV, is an endpoint commonly used in respiratory The rate of exacerbation events can be reduced by taking certain

typically lying with data management. The ability to look at rate of decline can be calculated simply using linear regression.

: . . : Thi b il lculated as th b f bati divided
multiple extracts of data while the study is ongoing and IS can be easlly calculated as the number ot exacerbations divide

blinded has enabled us to develop novel methods and When calculating the slope extreme values of FEV, caused by by the time Of treatment. For example, if one subject has. one
_ , . . . respiratory events or equipment malfunctions can lead to exacerbation in 6 months, the rate would be 2 exacerbations a year.
processes for increasing the confidence in data quality. differences in the rate of decline that don’t represent the true rate This means that if an exacerbation event is recorded as two events
of decline of the subject. This is illustrated here in this example plot instead of one, the subjects exacerbation rate per year can be as
Forced expiratory volume in one second (FEV,) is the volume of FEV,(mL) against Time (weeks). As illustrated in the figure, much as doubled. If this happens with a lot of subjects this can
of air expelled from the lungs in one second, this is changing the final data point to be influence the results.
measured in millilitres or litres depending on the equipment. an outlier (red) changes the raw j: S \
Outliers in FEV, can commonly be caused by a decrease in rate of decline quite substantially. R This data would traditionally be reviewed at a subject level, subjects
subject effort, illness or equipment failure. These values - with multiple respiratory events could be programmatically identified
would not be considered valid and including many subjects Subjects with outliers can be found 1100 but data would be reviewed on a case by case basis, an inefficient
with these values in the analysis can cause variations that easily, but the influence on the 1500 . and time consuming process.
may not represent the true treatment differences. Looking at results is more difficult to explain 70
without a visual/graphical option. 1500 4 4 ; —————

these in a visual way emphasises the importance of ensuring
that these outliers are genuine data points.

A respiratory exacerbation is an event, such as pneumonia or

a COPD exacerbation that effects the airways and hence the 3 . Rate Of Exa Ce r b at i O n S Exacerbations Profile
United Kingdom, Site: 001, SMITH, JOHN

patients ability to breathe. Respiratory tract exacerbations

may present over a period of a few days with symptoms For Rate of Exacerbations, the data was presented in a patient profile bar plot, Jursten
progressing. Due to this, sometimes these events can be with one plot per overlapping event. Information on medications taken at the
recorded as two separate exacerbations when they are time of the respiratory exacerbation was included as well as duration of the AE1 e
actually the same event progressing over time. When rates event in days. _
Of resp”‘atory tract exacerbat|ons are an endpc)'nt' record|ng Presenting this information in a visual way, itis apparent that the 2nd Adverse COPD Exacerbation
duplicate or overlapping events will alter results. event is not a second event but actually the same exacerbation event which s |
probably started on 315t December. This event would increase the rate of 12
The need for identifying these two different situations is exacerbations for this subject. In this example, the case is easy to deal with, | Respiratory Infection
: . .. : : however, when events are separated by a few days or even a week, the case is
apparent. Previously, clinicians would spend time looking . . L .
, , not so simple, and having the medications taken by the subject is more _
through vast amounts of data, however, these Patient Profile important Dose:. , Prednisone . 16
review tools h.ave mafie clinical review a quick and easy These profiles were reviewed by the clinical team and further action was taken
process stressing the importance of these data on our of querying the data or sending the exacerbation profile to the site and asking
endpoints. them to clarify the data. When the site can visually look at the profile, it is l
immediately clear if they have made any misrepresentation of what happened 31DEC2014 201AN2015
in the recorded data, and if not they can explain the differences for the clinical Date
team to review.
f I 5.5
4. FEV, Rate ot Decline . Summary
The need to have a visual tool to ease the clinical review was FEV1 Profile 102 W ° Reviewing study data in the traditional way
identified, with an ermohasis c?n. user ease and cqntent 3009 . . . Visit 5. RESPONSE 001: Data s correct can be 3 time consuming orocess.
needed to reach a clinical decision on further action. 2509 = o .
] Tr ar e e Data can be difficult to review when

Trt Stop Date
12-May-15

Using a combination of excel and SAS, the following tool was
developed. Some clinical review rules for FEV, rate of decline
were identified including large differences between
screening and baseline values and calculated individual rate

displayed in typical dataset standards such as
listings. Having unique tools can help our
clinical colleagues keep track of their review

FEVL (mL)

of declines greater than 750mL/year. Utilising these rules, a . i . - . L:E:w .
review spreadsheet was created identifying the subjects Time (Weeks) 0 more easi Iy
programmatically in SAS. Filtering on subject number gives e o \/i . . .
the |nd|V|dua| SUbJeCt InfOI’mathn on one pagE, |nCIUd|ng Dti}i;f;:rﬁ:;e ;..51}321“ }Eﬂgil_s il;-;}e >Con. Visits | Cfl'lrilge vil:fais;;m Comment: V.Isual tOO|S Can aS.SISt Wlth under:St.andlng
treatment information, previous queries, responses and any Site Subject | Status | BoSClne il e Baseine | <05L or of |mpact on endpomts for both clinical
preVIous Y Informatlon. r 0oz ; 102 : Withd : :EE?II-HE - - - - b - : Please reivew data at Visit 5. This value . rEVieWerS and inveStigatOrS at SitES.
e st e Page 10f1 * Seeing an outlying on an FEV, plot, or
res nesem Sresion I o Upon reviewing the spreadsheet, decisions can be made as to whether to take any seeing clinical events overla pping in front of
e further information, if a query has been answered previously with an appropriate . . . .
clinical reason for the discrepancies in FEV, between visits then the decision may be youind dlagram hlghllght the effect these
= made to not take any further action with the data, as it represents the true values. would have on analysis ,
i Previously, upon reviewing the data, query history for subjects would not have been . .
0 . n available to view as easily. ° Lsmg more advanced programming
g approaches to identify and display individual
= i Once all subjects have been reviewed and decisions whether to issue a profile made : :
) ] the spreadsheet can be read into SAS and a PDF version of the patient profile is SUbJeCtS can have benefits for all
" created and issued to the site for review. This document contains the clinical review departments, data management, clinical and
comment, the graphical representation of the FEV, data and space for the site .« 4. .
o o) investigator to comment to explain any large variations. Placing all of the statistics and programming.
I o 3 * 5 information into one document makes the anomalies in the FEV, data visually clear e With increased communication between
: i : ’ - B8 to the investigator at the site, whilst providing anymore information they need to T .
N nvestigate. departments and providing these visual
N tools created from a statistical standpoint to
— The PDF profiles can be issued to sites for their review. If they see any immediate .
Plesse rview data stlastiit Reductionin FEV1.is ot consistent with normal et o declinefr subjec. data entry issues with the FEV, data, it is assumed these will be corrected and the data ma nagement, we can hel P Increase data

subject will no longer be picked up by the clinical rules set initially. Alternatively, the gua |ty and hence contribution towards
Principal investigator can return and comment on the discrepancies in the box endooints

supplied. These comments can also be entered into an electronic data capture -
system to track. The comments from the site should explain the discrepancies seen
in the data and can be reviewed by a clinician to make sure they make sense
medically.
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THE ASSAY CAPABILITY TOOL (ACT): DRIVING THE ROBUSTNESS OF PRECLINICAL ASSAYS

Katrina Gore', Jason A. Miranda?, Phil Stanley', Jamie Turner?, Rebecca Dias?, Huw Rees?
1 Research Statistics, PharmaTherapeutics Clinical Research, Pfizer WRD; 2 Neuroscience & Pain Research Unit, Pfizer, Cambridge UK

Neuroscience & Pain

A @ Research Unit

ABSTRACT

It is hard to pick up a recent copy of Nature, Science or many preclinical
biomedical research journals without seeing an article on the issue of non-
reproducible research. The pharmaceutical industry is not immune to
these issues. Replication of published research findings is a key
component of drug target identification and provides confidence to
progress internal drug projects. Additionally, we use data from internally
developed in vitro and in vivo assays to assess the biological and
pharmacokinetic activity, selectivity and safety of novel compounds and
make decisions which impact their progression towards nomination for
clinical development.

This poster outlines steps Pfizer is already taking to improve the scientific
rigour of experiments through the use of the Assay Capability Tool. The
ACT promotes surprisingly basic but absolutely essential experimental
design strategies and represents the distilled experience of the provision
of over three decades of statistical support to laboratory scientists. It
addresses the age old issue of statistical design, the more recently
highlighted issue of bias and the hitherto overlooked issue of whether the
assay actually meets the needs of a drug project team.

THE ASSAY CAPABILITY TOOL (ACT) — RATIONALE

® The Pharma Industry relies on externally published and internally
generated data to provide confidence to initiate and progress internal
drug projects.

® Many literature articles during the past decade have highlighted the
need for improved preclinical research and the pace of publication is
growing:
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A call for transparent reporting to optimize the
predictive value of preclinical research

sStory C. Landis, Susan G. Amara, Khusru Asadullah, Chris P. Austin, Robi Blumei|

® “Sometimes the fundamentals get pushed aside — the basics of
experimental design, the basics of statistics” Lawrence Tabak, Principal
Deputy Director of the National Institutes of Health (US).

® Pfizer Research Statistics has worked for many years with scientists to
increase the robustness of our preclinical research and the ACT is the
result of that partnership.

THE ACT-WHAT IS IT

® A tool that promotes surprisingly basic but absolutely
essential experimental design strategies; documents the
strengths and weaknesses of an assay; and encourages the
definition of what a successful assay outcome will look like.

® 13 item checklist assisting the scientist and statistician in
designing fit for purpose preclinical assays / experiments.

® “Quality mark” facilitating informed use of assay results by
decision makers, e.g. drug project teams, governance bodies.

ADDRESSING 3 KEY ASPECTS OF ASSAY DEVELOPMENT

1. Aligning Assay Capability with Project Objectives

Aligning Assay Capability with Project Objectives

(Does the assayenable a crisp decision?)

Key Considerations Current Status / Recommendations to address gaps

Are the project team's scisntific
abjectivesforrunning the zssay recorded
in a protocol /SOP?

Hzsthe project team adequately pra-
defined what = successful 2sszy qutcoms
looks like inorderto guide decision
making 7

|sthe exparimantal design described in
the protocol /S0P znd zligned clossly with
the objectives?

® Have we defined a successful outcome in quantitative terms rather than
just stating success is a statistically significant p-value?

® |s the study design tuned to the objectives, i.e. can it deliver what the
project needs to make crisps decisions?

2. Enabling Assay Capability by Managing Variation

Enabling Assay Capability by Managing Variation

(Are we achieving required precision and using resources efficiently?)

Key Considerations CurrentStatus / Recommendations to addressgaps

Are the assay's development and
validation fully documented?

Havethe sources of variability present in
the assay been explored?

Isthe proposed sample size/ level of
replication fit for purpose?

Isthere a comprehensive protocol /SOP
detailing key assay characteristics?

How is assay performance monitored
over time? What is the plan for reacting
to signs of instability?

® \Was the assay soundly developed and does it deliver consistent results?
® Have we identified sources of variability and removed/controlled them?
® What is the impact of variation on sample size and precision of results?

® Are the critical features of the assay defined in a comprehensive
SOP/protocol?

3. Objectivity in Assay Conduct

Objectivity in Assay Conduct

(Are results likely to be reproducible?)

Key Considerations CurrentStatus / Recommendations to addressgaps

Are inclusion/exclusion criteria for the
assayspecified in the protocol/SOP?

Is the management of subjectivity in data
collection and reporting defined in the
assay protocol /SOP?

Ifthe raw data are processed (e.g. by
summarization or normalization) prior to
analysis, is the method for doing this
specified in the study protocol/SOP?

Are rules for treating data as outliers in the
analysis specified in the protocol/SOP

Is the analysis specified in the study
protocol /SOP? Is it fit for purpose?

® Has the potential for subjectivity in assay conduct, data handling and
analysis been considered?

® Have techniques of randomization, blocking and blinding been used,
where required, to prevent unintentional biases?

SUMMARISING THE THREE DOMAINS

The three domains are summarised by a low, medium or high grade to
indicate the level of confidence in decision making a team can have when
using data from the assay.

Assay Name Aligning Study Capability | Enabling Assay Capability Objectivity in
Project: with Project Objectives by Managing Variation Assay Conduct

Confidence in Decision Making
using data from this assay
(Low/Medium/High)

ACT Summary
_ Technical Specification
Target Value

Required Precision

Required Replication

ACT IMPLEMENTATION & AWARENESS

® Involves a partnership between statisticians and scientists, with the aim that
the tool is “owned” by scientists.

® Implementation has been tackled on many fronts:
® Guidance documents and other supporting materials
® Incorporation of the ACT into existing statistical training
® Awareness presentations to scientists and project leaders

® 2014/2015 Research Statistics goals require the ACT in place for assays
providing data to support project progression from the early stage of lead
development through to drug candidate nomination.

® Goal is also becoming part of Research Unit annual quality goals.

ACT CASE STUDY: MODULATION OF KNEE JOINT PAIN
IN SPINAL CORD

® This is a novel in vivo spinal cord neurophysiological assay developed to test
the efficacy of treatments for pain.

® Electrophysiological data is collected from single neurons in the spinal cord
of deeply anaesthetised rats pre-sensitised with monoiodoacetate (MIA)
while performing non-noxious and noxious knee joint rotation.

® The Assay Capability Tool was used to guide experimental design, leading
to a high quality and robust preclinical assay that won an internal 2014 3Rs
award from the Pfizer Animal Care and Welfare Board.

This poster focuses on the use of the ACT in the development of the assay. Full
details of the assay methodology and the ACT can be found here:

RESEARCH ARTICLE VIEWS

A Preclinical Physiological Assay to Test Modulation of Knee Joint Pain in the
Spinal Cord: Effects of Oxycodone and Naproxen

Jason A Miranda [E], Phil Stanley, Katrina Gore, Jamie Tumner, Rebecca Dias, Huw Rees

Published: August 26, 2014 - DOI: 10.1371/journal pone.0106108

1. Aligning Assay Capability with Project Objectives

® Project objectives: the overall objective was to develop a high quality in vivo
electrophysiology assay to confidently test novel compounds for efficacy
against pain.

® Defining success: a structured approach to assay development was
performed using known agents to validate the methodology and define
target values for the effect size and precision.

2. Enabling Assay Capability by Managing Variation

® Structured assay development: a series of pilot and confirmatory
experiments were run:

® A small pilot oxycodone experiment was used to assess viability of
the experimental approach

® An exploratory oxycodone experiment aimed to identify the
primary endpoint and understand the interplay between spike
reduction and assay variation

® A follow-up naproxen experiment was designed based on learnings
from the previous experiments to test the prediction that COX-
1/COX-2 inhibition reduces the primary endpoint of tonic spiking
activity in response to noxious joint rotation

® Identifying variability: appropriate design of the individual experiments
allowed sources of variability to be identified and their impact quantified.

® Minimising variability: detailed protocols describing the experimental
timelines and procedures were developed to minimise and control future
experimental variation.

® Sample sizing: sample size calculations were performed after the
oxycodone and naproxen experiments to ensure the appropriate number
of animals were used to meet each study objective and to guide the
sample size for future drug studies.

® Quality Control (QC) Charts: oxycodone or naproxen will be used in
future experiments as a positive control and QC charts created to assess
stability of response over time.

3. Objectivity in Assay Conduct

® Inclusion/exclusion criteria: these were developed for individual cells
based on recording quality, animal health and joint rotation and were
documented in the experimental protocol.

® Randomisation & Blinding: to ensure the scientist remained unaware of
the treatment an animal received and prevent unintentional biases,
random allocation to experiment groups, allocation concealment and
blinded outcome assessment were implemented and documented.

® Blocking: each individual study was run in smaller separate blocks to
prevent the introduction of bias from changing conditions over time. A
futility analysis was performed halfway through the study to prevent
unnecessary subsequent animal usage.

® Data processing & statistical analysis: any data processing methods were
documented so they could be reproduced and a statistical analysis
appropriate for the design, e.g. including baseline and block information,
was used.

ASSAY CAPABILITY TOOL — THE BOTTOM LINE

The ACT was developed to guide the early development of assays and to
assess their capability to generate reliable data.

* It ensures good statistical design and analysis is embedded into the
already established good scientific practices.
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