Quantitative Benefit-risk assessment using MultiCriteria Decision Analysis (MCDA) and its extensions: practical applications

Stéphanie Cadour¹, Gaëlle Saint-Hilary^{2,3}

¹Keyrus Biopharma (France)

²Politecnico di Torino (Italy)

³Institut de Recherches Internationales Servier (France)

Webinar EFSPI/PSI SIG Benefit-Risk – 13 March 2018

Preliminary information

- All the programs to reproduce the results of this presentation will be available on the PSI website
- The R code presented here is intended to be simple and understood by all (more efficient programming ways are certainly possible)

Benefit-Risk assessment Introduction

- Benefit-risk assessment: to compare the benefits and the risks of a treatment
- A medicine should be considered only if it has a favorable benefit-risk balance → Strong predictor for regulatory approval and long-term viability of a medicine
- Until 2010, most of the drug benefit-risk assessments were qualitative
- Since then, structured qualitative frameworks and quantitative methods for benefit-risk assessment were developed
 - → more transparency, consistency and better communication

Methodology review

For benefit-risk assessment

Source: Mt-Isa 2014

4

Motivating example: Telithromycin (Ketek®) IMI PROTECT case study

2001

EU approval

- CAP (Community-Acquired Pneumonia)
- **AECB** (Acute Exacerbation Chronic bronchitis)
- **ABS** (Acute sinusitis)
- Tonsillitis/Pharyngitis

2007

and ABS

Compared to other macrolides, Telithromycin seems to be associated with a somewhat different risk profile including the following adverse reactions (eye disorders, loss of consciousness, acute liver failure, prolonged QT interval).

We will illustrate the use of quantitative approaches for benefit-risk assessment on telithromycin's CAP indication

Multi-Criteria Decision Analysis (MCDA) and its extensions

Principle

Benefit-Risk utility score

$$u(\xi_i, w) = w_1 u_1(\xi_{i1}) + ... + w_n u_n(\xi_{in})$$

G. Saint-Hilary, S. Cadour Quantitative benefit-risk assessment

Motivating example: Telithromycin (Ketek®) IMI PROTECT case study - Indication CAP

Value Tree

Motivating example: Telithromycin (Ketek®) IMI PROTECT case study – Indication CAP

2 treatments: Ketek & Comparator

• 5 criteria: 1 for favorable effects, 4 for unfavorable effects

Criteria		Ketek [®]		Comparator	
		n/N	ξ _{1j}	n/N	ξ _{2j}
Favorable effects	Cure rate	2185/2417	90%	813/926	87,8%
Unfavorable effects	Hepatic AEs	57/1320	4,3%	46/1121	4,1%
	Cardiac AEs	4/1320	0,3%	3/1121	0,3%
	Visual AEs	14/1320	1,1%	5/1121	0,4%
	Syncope AEs	2/1320	0,2%	3/1121	0,3%

Data coming from the EPAR.

Different models

- Deterministic MCDA (dMCDA)
- Probabilistic MCDA (pMCDA)
- Stochastic Multicriteria Acceptability Analysis (SMAA)
- Dirichlet SMAA

Deterministic MCDA

Mussen et al. (2007)

Fixed value: uncertainty is ignored

Random variable: uncertainty is taken into account

Benefit-Risk utility score

$$u(\xi_i, w) = w_1 u_1(\xi_{i1}) + ... + w_n u_n(\xi_{in})$$

Deterministic MCDA

Mussen et al. (2007)

Partial value functions

- Used to **normalize** the performances on the criteria by mapping them on a 0 to 1 scale from **best and worst preferable values of the criteria**
- Linear value functions are often used, but non linear functions can be used

How to define the best and worst preferable values?

- 95% confidence limits are often used, but it is not advised (datadriven, not reproducible)
- Bounds based on clinical considerations
- Bounds defined on the range of the criteria (e.g. 0-1 for probabilities of event)

Example Telithromycin

Partial value functions

Criteria	Best	Worst	Function	
Favorable effects	Cure rate	100%	40%	linear
Unfavorable effects Hepatic AEs		0%	10%	inverse linear
	Cardiac AEs	0%	10%	inverse linear
Visual AEs		0%	10%	inverse linear
	Syncope AEs	0%	10%	inverse linear

Example Telithromycin

What do we do?

For each model, the application to the motivation example is presented

R Code

Data				
	# Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope # Treatments = 1. Telithromycin, 2. Comparator			
Number of events	<pre>events = t(matrix(c(2185, 813,</pre>			
Number of patients	N = t(matrix(c(2417, 926, 1320, 1121, 1320, 1121, 1320, 1121, 1320, 1121), nrow=5, byrow=T))			

dMCDA: example Telithromycin

Criterion parameters

 ξ_{ij} deterministic, proportion of events = # events / (# patients)

xi=events/N

Partial value functions

```
u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}^{"}}{\xi_{ij}^{'} - \xi_{ij}^{"}} \text{(linear)}
\xi_{ij}^{'} = \text{most preferable value}
\xi_{ij}^{"} = \text{least preferable value}
```

```
# Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope
# Most preferable values ; Least preferable values
most = c(1, 0, 0, 0, 0)
least = c(0.4, 0.1, 0.1, 0.1, 0.1)
```

Partial Value Functions
pvf <- function(x, most, least) {
return((x - least) / (most - least))
}
values=pvf(xi, most, least)</pre>

Weights

 w_j deterministic, elicited by the clinicians / regulators / patients, with guidance from the statisticians (e.g surveys, swing-weighting, MACBETH tool...)

weights=c(0.30, 0.15, 0.15, 0.15, 0.25)

Utility score

$$u(\xi_{ij}, w) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})$$

us <- function (v, w) { return (sum(w*v))}
us_teli = us(values[,1], weights)
us_comp = us(values[,2], weights)</pre>

14

dMCDA: example Telithromycin

Results: dMCDA

Benefit-risk utility score:

Telithromycin Comparator **0.863 0.860**

Conclusion from dMCDA: the benefit-risk balance of telithromycin is better than the benefit-risk balance of the comparator

But...

- Small difference
- Ignore uncertainties
- Sensitivity analyses should be conducted (varying the weights, using different criteria...)

dMCDA: conclusion

✓ Simple summary dMCDA ➤ Deterministic, all sources of uncertainty are ignored pMCDA **SMAA** Dirichlet **SMAA**

Probabilistic MCDA

Waddingham et al. (2016)

Fixed value: uncertainty is ignored

Random variable: uncertainty is taken into account

Performance of treatment i on criterion j

Used to normalize the performances on the criteria by mapping them on a 0 to 1 scale

Value **functions Parameters** Fixed value Weights

Reflects the importance of the criteria

Random variable

Benefit-Risk utility score

$$u(\xi_i, w) = w_1 u_1(\xi_{i1}) + ... + w_n u_n(\xi_{in})$$

pMCDA: example Telithromycin (1/3)

	Criterion parameters		
	Ntrt=2; Nendpt=5; nsim=100000 # nb of simulations to obtain the posterior distributions		
$\xi_{ij} \sim Beta(a, b)$ a = # events + 1 b = # non-events + 1 random variables instead	# Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope # Parameters of the posterior beta distribution a=events+1 b=N-events+1		
of single summary values	xi = array(0, c(nsim, Ntrt, Nendpt))		
	<pre>for (i in 1:Ntrt) { for(j in 1:Nendpt) { xi[,i,j]=rbeta(nsim, a[i,j], b[i,j]) }}</pre>		

pMCDA: example Telithromycin (2/3)

Partial value functions

```
u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}^{"}}{\xi_{ij}^{'} - \xi_{ij}^{"}} \text{(linear)}
\xi_{ij}^{"} = \text{most preferable value}
\xi_{ij}^{"} = \text{least preferable value}
```

```
# Most preferable values
most = c(1, 0, 0, 0, 0)
# Least preferable values
least = c(0.4, 0.1, 0.1, 0.1, 0.1)

pvf <- function(x, most, least) { return(( x - least) / (most - least))}
values = array(0, c(nsim, Nendpt, Ntrt))
for (i in 1:nsim) {
   values[i,]=pvf(t(xi[i,]), most, least)
}</pre>
```

Weights

 w_i remain deterministic

weights=c(0.30, 0.15, 0.15, 0.15, 0.25)

Utility score

$$\mathbf{u}(\xi_{ij}, \mathbf{w}) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})$$
random variables

```
us <- function (v, w) { return (sum(w*v))}
us_teli=us_comp=diff=vector(length=nsim)
for (i in 1:nsim) {
  us_teli[i] = us(values[i,,1], weights)
  us_comp[i] = us(values[i,,2], weights)
  diff[i]=us_teli[i]-us_comp[i]
}</pre>
```

pMCDA: example Telithromycin (3/3)

Results: pMCDA

• Distribution of the B-R utility scores • Statistics on the B-R utility scores

Treatment	Median (95% CrI)
Telithromycin	0.858 (0.836;0.875)
Comparator	0.854 (0.829;0.873)
Difference	0.004 (-0.028;0.032)

Probability to be better than the comparator

Probability Telithromycin > Comparator	
60%	

pMCDA: conclusion

dMCDA	✓ Simple summary ➤ Deterministic, all sources of uncertainty are ignored
pMCDA	 ✓ Takes into account uncertainty in treatment effects on the criteria ✗ Preferences of decision-makers (weights) are explicitly required
SMAA	
Dirichlet SMAA	

SMAA

Tervonen et al. (2011)

Fixed value: uncertainty is ignored

Random variable: uncertainty is taken into account

the criteria

Random variable

 ξ_{ij}

Performance of treatment i on criterion j

 $u_j()$

Used to normalize the performances on the criteria by mapping them on a 0 to 1 scale

Parameters

Weights

Random

Variable

Variable

Variable

Variable

Variable

Value

Random variable

Benefit-Risk utility score

$$u(\xi_i, w) = w_1 u_1(\xi_{i1}) + ... + w_n u_n(\xi_{in})$$

22

SMAA

Tervonen et al. (2011)

Assumption: the weights have a uniform distribution on a space of weights, that needs to be defined

 No information, i.e. no preference between the criteria

$$W = \{ w \in \mathbb{R}^n, w > 0, \sum_{j=1}^n w_j = 1 \}$$

- Restrictions of the space of the weights
 - Upper and/or lower bounds
 - Complete ranking of the criteria
 - Equality of weights between benefits and risks

Example for 3 criteria w_1, w_2, w_3

Figure: Full space

Figure: Ranking: $w_1 \ge w_2 \ge w_3$

SMAA: example Telithromycin (1/3)

Criterion parameters Ntrt=2; Nendpt=5; nsim=100000 # nb of simulations to obtain the posterior distributions # Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope $\xi_{ij} \sim Beta(a,b)$ # Parameters of the posterior beta distribution a = # events +1a=events+1 b = # non-events + 1b=N-events+1 random variables instead xi = array(0, c(nsim, Ntrt, Nendpt)) of single summary values for (i in 1:Ntrt) { for(j in 1:Nendpt) { xi[,i,j]=rbeta(nsim, a[i,j], b[i,j])

Partial value functions

```
# Most preferable values most = c(1, 0, 0, 0, 0) # Least preferable values least = c(0.4, 0.1, 0.1, 0.1)

\xi'_{ij} = \text{most preferable value}
\xi''_{ij} = \text{least preferable value}
\xi''_{ij} = \text{least preferable value}
\text{pvf} <-\text{function}(x, \text{most, least}) \{ \text{return}((x - \text{least}) / (\text{most - least})) \} 
\text{values} = \text{array}(0, \text{c(nsim, Nendpt, Ntrt)}) 
\text{for (i in 1:nsim)} \{ \text{values}[i,] = \text{pvf}(t(\text{xi}[i,]), \text{most, least}) \}
```

SMAA: example Telithromycin (2/3)

Weights

w_j **random variables** with a joint uniform distribution on a weight space *W*

Example: use simplex.sample from package hitandrun to # generate uniform unit simplexes

library(hitandrun) weights=simplex.sample(Nendpt, nsim, sort=FALSE)\$samples

Utility score

```
u(\xi_{ij}, w) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})
random variables
```

```
us <- function (v, w) { return (sum(w*v))}
us_teli=us_comp=diff=vector(length=nsim)
for (i in 1:nsim) {
  us_teli[i] = us(values[i,,1], weights[i,])
  us_comp[i] = us(values[i,,2], weights[i,])
  diff[i]=us_teli[i]-us_comp[i]
}</pre>
```

SMAA: example Telithromycin (3/3)

Results: SMAA

Without weight elicitation

Distribution of the difference in B-R
 utility scores

Statistics on the difference in B-R utility scores

Treatment	Median (95% CrI)
Difference	-0.005 (-0.067;0.04)

Probability to be better than the comparator

Probability Telithromycin > Comparator		
45%		

SMAA: conclusion

dMCDA	✓ Simple summary
dMCDA	➤ Deterministic, all sources of uncertainty are ignored
nMCD4	✓ Takes into account uncertainty in treatment effects on the criteria
pMCDA	* Preferences of decision-makers (weights) are explicitly required
	√ Takes into account uncertainty in treatment effects on the criteria
CREAA	\checkmark Does not require the elicitation of preferences to weigh the criteria
SMAA	Interpretation less straightforward
	High degree of uncertainty in the results

Dirichlet SMAA

Dirichlet SMAA

Saint-Hilary et al. (2017)

Fixed value: uncertainty is ignored

Random variable: uncertainty is taken into account

ξij

Performance of treatment i on criterion j

 $u_j()$

Used to normalize the performances on the criteria by mapping them on a 0 to 1 scale

Value functions

Weights

Random

Wariable

Value functions

Reflects the importance of the criteria

Random variable

Benefit-Risk utility score

$$u(\xi_i, w) = w_1 u_1(\xi_{i1}) + ... + w_n u_n(\xi_{in})$$

28

Dirichlet SMAA

Saint-Hilary et al. (2017)

• \mathbf{w}_{j} : weights are random variables, following a Dirichlet distribution

$$(w_1, ..., w_n) \sim Dirichlet(\alpha_1, ..., \alpha_n)$$

Property:

the means of all w_i stay the same if all α_i are scaled with the same multiplicative constant, with variances getting smaller as the parameters α_i grow.

We rewrite the Dirichlet distribution as follows:

$$(w_1, \dots, w_n) \sim Dirichlet(c.(w_1^0, \dots, w_n^0))$$

With: (i)
$$0 \le w_1^0, ..., w_n^0 \le 1$$
 with $\sum_{j=1}^n w_j^0 = 1$

(ii) c, a scaling constant, that can vary from 0 to $+\infty$

Dirichlet SMAA

Saint-Hilary et al. (2017)

- The variances of w_i are inversely proportional to c.
- They equal to infinity when c = 0 and to zero when $c = +\infty$.
- Dirichlet SMAA corresponds to:
 - pMCDA, when $c = +\infty$, as weights are deterministic $(w_i = w_i^0, j = 1, ..., n)$
 - SMAA, without weight elicitation when $w_1^0 = ... = w_n^0 = 1/n$ and c = n
- *c* : **confidence level** of the decision-makers in the elicitation of their preferences, which impact on the results can be assessed using different values of *c*.

Dirichlet SMAA: example Telithromycin (1/3)

Criterion parameters Ntrt=2; Nendpt=5; nsim=100000 # nb of simulations to obtain the posterior distributions # Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope $\xi_{ij} \sim Beta(a,b)$ # Parameters of the posterior beta distribution a = # events +1a=events+1 b = # non-events + 1b=N-events+1 random variables instead xi = array(0, c(nsim, Ntrt, Nendpt)) of single summary values for (i in 1:Ntrt) { for(j in 1:Nendpt) { xi[,i,j]=rbeta(nsim, a[i,j], b[i,j])**Partial value functions**

```
most = c(1, 0, 0, 0, 0)
 u_j(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}^{"}}{\xi_{ij}^{"} - \xi_{ij}^{"}} \text{(linear)}
                                       # Least preferable values
                                       least = c(0.4, 0.1, 0.1, 0.1, 0.1)
\xi'_{ij} = most preferable value
\xi_{ii}^{"} = least preferable value
                                       pvf <- function(x, most, least) { return(( x - least) / (most - least))}</pre>
                                       values = array(0, c(nsim, Nendpt, Ntrt))
                                       for (i in 1:nsim) { values[i,,]=pvf(t(xi[i,,]), most, least)}
```

Most preferable values

Dirichlet SMAA: example Telithromycin (2/3)

Weights

w_j **random variables** with a Dirichlet distribution

c = confidence factor, level of
 confidence of the decisionmakers in their weight elicitation

library(gtools)

Example for c=50 c=50

weights=rdirichlet(nsim,c(0.30, 0.15, 0.15, 0.15, 0.25)*c)

Utility score

$$u(\xi_{ij}, w) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})$$
random variables

```
us <- function (v, w) { return (sum(w*v))}
us_teli=us_comp=diff=vector(length=nsim)
for (i in 1:nsim) {
  us_teli[i] = us(values[i,,1], weights[i,])
  us_comp[i] = us(values[i,,2], weights[i,])
  diff[i]=us_teli[i]-us_comp[i]
}</pre>
```

Dirichlet SMAA: example Telithromycin (3/3)

Results: Dirichlet SMAA

For a given confidence factor (here, c=50)

Distribution of the difference in B-R utility scores

	50			\bigwedge		
ity	15 -			$/ \setminus$		
Density	9 -					
	- ي			 		
	0 -	0.10	-0.05	0.00	0.05	0.10
		Differe	nce in Diri	chlet SM	AA utility s	cores

Treatment	Median (95% CrI)
Difference	0.004 (-0.031;0.033)

Probability to be better than the comparator

Probability Telithromycin > Comparator
60%

Dirichlet SMAA: example Telithromycin (3/3)

Results: Dirichlet SMAA

Varying confidence factor

Probability to be better than the comparator

Taking into account the **uncertainty** of the decisionmakers in their weight elicitation

Dirichlet SMAA: conclusion

✓ Simple summary dMCDA > Deterministic, all sources of uncertainty are ignored ✓ Takes into account uncertainty in treatment effects on the criteria pMCDA * Preferences of decision-makers (weights) are explicitly required ✓ Takes into account uncertainty in treatment effects on the criteria ✓ Does not require the elicitation of preferences to weigh the criteria **SMAA** Interpretation less straightforward ➤ High degree of uncertainty in the results ✓ Takes into account uncertainty in treatment effects on the criteria ✓ Takes into account uncertainty in weight elicitation, and allows flexibility by making the variance of the weights vary Dirichlet ✓ Permits to account for a new source of uncertainty: the level of **SMAA** confidence of the decision-makers in their weight elicitation ✓ All parameters have a natural interpretation: treatment effects, decision-makers' preferences and their strength of confidence

Other examples in backup slides

 dMCDA: Gardasil[®] vaccine for preventing anal cancer in males

 pMCDA: Natalizumab for the treatment of Relapsing Remitting Multiple Sclerosis (RRMS)

• Dirichlet SMAA: fictive case-study in depression (inspired by a real case)

MCDA and its extensions Conclusion

- Powerful quantitative decision-making tools
 - Recognized by the EMA
- Subjectivity: input from clinical/regulatory/patients needed to determine the criteria and their relative importance, as well as the range of preferences
 - Sensitivity analyses should be performed
 - Need to consider the various sources of uncertainty
- Relative complexity
 - Collecting and summarizing the data on multiple criteria, possibly from different sources
- Usually used late in the development → could be applied in Early development using biomarkers

Main references (1/2)

- EMA (2010). Benefit-risk methodology project. Work package reports: applicability of current tools and processes for regulatory benefit-risk assessment. Available at http://www.ema.europa.eu/
- IMI PROTECT Work package 5: benefit-risk integration and representation. Available at http://protectbenefitrisk.eu/
- EFSPI-SIG Benefit-risk http://www.benefit-risk-assessment.com/welcome-to-the-benefit-risk-blog-of-the-efspi-benefit-risk-sig/
- Mt-Isa, S., Ouwens, M., Robert, V., Gebel, M., Schacht, A., and Hirsch, I. (2015). Structured benefit–risk assessment: a review of key publications and initiatives on frameworks and methodologies. *Pharmaceutical Statistics* **15**, 324–332. doi: 10.1002/pst.1690
- Mt-Isa, S. *et al.* (2014). Balancing benefit and risk of medicines: a systematic review and classification of available methodologies. *Pharmacoepidemiology and Drug Safety* **23**, 667-678. doi: 10.1002/pds.3636
- Mussen, F., Salek, S., and Walker, S. (2007). A quantitative approach to benefit–risk assessment of medicines—part 1: the development of a new model using multi-criteria decision analysis. *Pharmacoepidemiology and Drug Safety* **16**, S2–S15.

Main references (2/2)

- Nixon, R., Dierig, C., Mt-Isa, S., Stockert, I., Tong, T., Kuhls, S., Hodgson, G., Pears, J., Waddingham, E., Hockley, K., and Thomson, A. (2016). A case study using the PrOACT-URL and BRAT frameworks for structured benefit risk assessment. *Biometrical Journal* 58, 8–27.
- Tervonen, T., Van Valkenhoef, G., Buskens, E., Hillege, H. L., and Postmus, D. (2011). A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis. *Statistics in Medicine* 30, 1419–1428. DOI: 10.1002/sim.4194.
- Waddingham, E., Mt-Isa, S., Nixon, R., and Ashby, D. (2016). A Bayesian approach to probabilistic sensitivity analysis in structured benefit–risk assessment. *Biometrical Journal* **58**, 28–42.
- **Saint-Hilary, G.**, Cadour, S., Robert, V. and Gasparini, M. (2017). A simple way to unify multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) using a Dirichlet distribution in benefit-risk assessment. *Biometrical Journal* (early view online). doi: 10.1002/bimj.201600113
- Marcelon, L., Verstraeten, T., Dominiak-Felden, G., Simondon, F. (2016). Quantitative benefit-risk assessment by MCDA of the quadrivalent HPV vaccine for preventing anal cancer in males. *Expert Rev Vaccines* 15 (1): 139 48. doi: 10.1586/14760584.2016. 1107480

Back-up slides

(...) the MAH has used the 'problem, objectives, alternatives, consequences, trade-offs, uncertainty, risk attitude, linked decisions' (PrOACT-URL) and the multi criteria decision analysis' (MCDA) approaches, which are two similar and well-structured approaches to estimate the overall benefit-risk balance, both on a qualitative (PrOACT and MCDA) and a quantitative (MCDA) point of view. These two approaches allow taking into consideration all the potential benefits and all the potential risks within a single evaluation.

Quantitative benefit-risk assessment by MCDA of the quadrivalent HPV vaccine for preventing anal cancer in males

Lydie Marcelon, Thomas Verstraeten, Geraldine Dominiak-Felden & François Simondon

To cite this article: Lydie Marcelon, Thomas Verstraeten, Geraldine Dominiak-Felden & François Simondon (2016) Quantitative benefit-risk assessment by MCDA of the quadrivalent HPV vaccine for preventing anal cancer in males, Expert Review of Vaccines, 15:1, 139-148, DOI: 10.1586/14760584.2016.1107480

REV	ÌEW	
OF VACCIN		
		- 2
processed.		
-		

Proact-url

Generic **qualitative** framework to structure decision problems

dMCDA

Quantitative approach to synthetize the results

Problem

Objective

Alternatives

Consequences

Trade-off

Uncertainty

Risk tolerance

Linked decisions

Benefit-Risk utility score

$$u(\xi_i, w) = w_1 u_1(\xi_{i1}) + ... + w_n u_n(\xi_{in})$$

Data sources

Identification of key benefits and risks	Weights	Т	reatment performances on the criteria
Sanofi Pasteur MSD epidemiologists, wi on the qHPV vaccin	th working experience	•	Merck/Sanofi Pasteur MSD- sponsored clinical trials
2) Panel of six external experts		•	Post-authorization study reports

Treatment groups

- Gardasil[®]
- No vaccination

Quantitative benefit-risk assessment Cadour

Example 1: Gardasil® vaccine for preventing anal cancer in males

Results: dMCDA

Gardasil[®] No vaccination Benefit-risk utility score: 46 66

Sensitivity analyses: results are robust to changes in

- the **weight** assigned to the individual criteria or nodes
- the **model parameters** (e.g. inclusion of data less favorable to the vaccine or excluding all beneficial effects other than anal cancer prevention)

"MCDA is a method considered to be useful as a **complementary and supportive tool**. Through a number of steps the purpose is to **bring together evaluations of** options on both benefits and risks into one overall **evaluation** taking into account what is considered best current evidence."

Conclusion

Assessment report 25 April 2014

"The benefit-risk balance [of Gardasil®] is considered positive."

→ Rare serious side effect in an effective treatment for a serious disease

Was the decision right to keep natalizumab on the market given that increased episodes of PML were observed?

Data sources

Identification of key benefits and risks	Weights	Treatment performances on the criteria
Individual experts	Patient representatives	Mainly:
(based largely on data from the SPC and the	(Decision conference	• EPARs
EPAR for natalizumab)	held on 23 Sept 2011)	Literature search

EPAR: European public assessment reports SPC: Summary of Product Characteristics

Treatment groups

- Natalizumab
- Placebo

- Glatiramer Acetate
- Beta-interferon

Results: pMCDA

Distribution of the B-R utility scores • Statistics on the B-R utility scores

Treatment	Median (95% CrI)
Placebo	0.92 (0.92;0.93)
Natalizumab	0.96 (0.95;0.96)
Beta-interferon	0.93 (0.92;0.94)
Glatiramer Acetate	0.93 (0.92;0.94)

 Probability to be better than the control

Treatment	Probability Treatment > Placebo
Natalizumab	100%
Beta-interferon	80%
Glatiramer Acetate	79%

Source: Waddingham 2016

Conclusion

Despite the incidence of the serious rare adverse events PML,
 Natalizumab has the best benefit-risk profile

(inspired by a real case)

Context: Go/No-Go Ph III

Results from Ph II

- Effective treatment
- Dose-response relationship for efficacy and safety
- Hypokalemia may be a serious adverse effect

Considered strategies for Ph III

- Low dose
- Low dose with possible dose-increase
- High dose
- High dose with potassium supplementation

Which dose/regimen has the best chance to have a positive Benefit-Risk balance versus Placebo in Phase III?

(inspired by a real case)

Data sources

Identification of key benefits and risks	Weights	Treatment performances on the criteria
Sponsor multidisciplinary team (clinical, pharmacovigilance, regulatory, statistics etc.)		Phase II trial

Treatment groups

- Low dose
- Low dose with possible dose-increase
- High dose
- High dose with potassium supplementation

Note: details about the combination of new hypotheses with the data (dose-increase, potassium supplementation) and about predictions of the next study are not included in this presentation

Weights

Example 3: Fictive case-study in depression

(inspired by a real case)

Criteria and weights

Results from Phase II

Primary efficacy criterion and 5 more frequent adverse events

But decision-makers are not quite confident in their weight elicitation...

(inspired by a real case)

Results: Dirichlet SMAA

 Predictive distribution of the differences in B-R utility scores vs Placebo

 Statistics on differences in B-R utility scores vs Placebo

Treatment	Diff vs Placebo Median (95% CrI)
Low dose	0.07 (-0.04;0.18)
High dose	-0.04 (-0.16;0.08)
Dose-increase	0.03 (-0.08;0.14)
High dose suppl	0.10 (-0.02;0.21)

(inspired by a real case)

Results: Dirichlet SMAA

• Probability to be better than placebo in the next Ph III

Taking into account the uncertainty of the decision-makers in their elicitation of preferences (weights)

(inspired by a real case)

Conclusion

 High dose with potassium supplementation seems to be the regimen with the best benefit-risk balance vs placebo