Quantitative Benefit-risk assessment using MultiCriteria Decision Analysis (MCDA) and its extensions: practical applications

Stéphanie Cadour¹, Gaëlle Saint-Hilary^{2,3}

¹Keyrus Biopharma (France)
²Politecnico di Torino (Italy)
³Institut de Recherches Internationales Servier (France)

Webinar EFSPI/PSI SIG Benefit-Risk – 13 March 2018

Preliminary information

- All the programs to reproduce the results of this presentation will be available on the PSI website
- The R code presented here is intended to be simple and understood by all (more efficient programming ways are certainly possible)

Benefit-Risk assessment Introduction

- Benefit-risk assessment: to compare the benefits and the risks of a treatment
- A medicine should be considered only if it has a favorable benefit-risk balance -> Strong predictor for regulatory approval and long-term viability of a medicine
- Until 2010, most of the drug benefit-risk assessments were qualitative
- Since then, structured qualitative frameworks and quantitative methods for benefit-risk assessment were developed

→ more transparency, consistency and better communication

Main working groups: PhRMA (Pharmaceutical Research and Manufacturers of America) / EMA (European Medicines Agency) / IMI-PROTECT (Innovative Medicines Initiative - Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium) / EFSPI (European Federation of Statisticians in the Pharmaceutical Industry) / PSI (Statisticians in the Pharmaceutical Industry)

Source: Mt-Isa 2014

Methodology review For benefit-risk assessment

G. Saint-Hilary, S. Cadour Quantitative benefit-risk assessment

Motivating example: Telithromycin (Ketek[®]) *IMI PROTECT case study*

Compared to other macrolides, Telithromycin seems to be associated with a somewhat different risk profile including the following adverse reactions (eye disorders, loss of consciousness, acute liver failure, prolonged QT interval).

We will illustrate the use of quantitative approaches for benefit-risk assessment on telithromycin's CAP indication

Multi-Criteria Decision Analysis (MCDA) and its extensions

Principle

Webinar

Quantitative benefit-risk assessment

Motivating example: Telithromycin (Ketek[®]) *IMI PROTECT case study – Indication CAP*

AE = Adverse Event

Motivating example: Telithromycin (Ketek[®]) IMI PROTECT case study – Indication CAP

- 2 treatments: Ketek & Comparator
- 5 criteria: 1 for favorable effects, 4 for unfavorable effects

Criteria		Ketek®	D	Comparator	
		n/N	ξ 1j	n/N	^ξ 2j
Favorable effects	Cure rate	2185/2417	90%	813/926	87,8%
Unfavorable effects Hepatic AEs		57/1320	4,3%	46/1121	4,1%
	Cardiac AEs	4/1320	0,3%	3/1121	0,3%
	Visual AEs	14/1320	1,1%	5/1121	0,4%
	Syncope AEs	2/1320	0,2%	3/1121	0,3%

Data coming from the EPAR.

Different models

- Deterministic MCDA (dMCDA)
- Probabilistic MCDA (pMCDA)
- Stochastic Multicriteria Acceptability Analysis (SMAA)
- Dirichlet SMAA

Deterministic MCDA Mussen et al. (2007)

Fixed value: uncertainty is ignored

Random variable: uncertainty is taken into account

Deterministic MCDA Mussen et al. (2007)

Partial value functions

- Used to normalize the performances on the criteria by mapping them on a 0 to 1 scale from best and worst preferable values of the criteria
- Linear value functions are often used, but non linear functions can be used

How to define the best and worst preferable values ?

- 95% confidence limits are often used, but it is not advised (datadriven, not reproducible)
- Bounds based on clinical considerations
- Bounds defined on the range of the criteria (e.g. 0-1 for probabilities of event)

Example Telithromycin

Partial value functions

Criteria		Best	Worst	Function
Favorable effects	Cure rate	100%	40%	linear
Unfavorable effects	Hepatic AEs	0%	10%	inverse linear
	Cardiac AEs	0%	10%	inverse linear
	Visual AEs	0%	10%	inverse linear
	Syncope AEs	0%	10%	inverse linear

Example Telithromycin

What do we do?	For each model, the application to the motivation example is presented R Code
	Data
Number of events	<pre># Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope # Treatments = 1. Telithromycin, 2. Comparator events = t(matrix(</pre>
Number of patients	N = t(matrix(c(2417, 926, 1320, 1121, 1320, 1121, 1320, 1121, 1320, 1121, 1320, 1121), nrow=5, byrow=T))

dMCDA : example Telithromycin

Criterion parameters			
ξ_{ij} deterministic, proportion of events = # events / (# patients) xi=events/N			
	Partial value func	tions	
$u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}' - \xi_{ij}''} (\text{linear})$ $u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}' - \xi_{ij}''} (\text{linear})$ $\frac{\xi_{ij}'}{\xi_{ij}' = \text{most preferable value}}{\xi_{ij}'' = \text{least preferable value}}$ $\frac{y_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}' - \xi_{ij}''} (\text{linear})$ $\frac{\xi_{ij}'' = 1 \text{ least preferable value}}{\xi_{ij}'' = 1 \text{ least preferable value}}$ $\frac{y_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}' - \xi_{ij}''} (\text{linear})$ $\frac{y_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}'' - \xi_{ij}''}} (\text{linear})$ $\frac{\xi_{ij}'' = 1 \text{ least preferable value}}{\xi_{ij}'' = 1 \text{ least preferable value}}$ $\frac{y_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}'' - \xi_{ij}''}} (\text{linear})$ $\frac{\xi_{ij}'' = 1 \text{ least preferable value}}{\xi_{ij}'' = 1 \text{ least preferable value}}$ $\frac{\xi_{ij}'' = 1 \text{ least preferable value}}{\xi_{ij}'' - \xi_{ij}''}} (\text{linear})$ $\frac{\xi_{ij}'' = 1 \text{ least preferable value}}{\xi_{ij}'' = 1 \text{ least preferable value}} (\frac{\xi_{ij}'' - \xi_{ij}''}{\xi_{ij}'' - \xi_{ij}''}} (\frac{\xi_{ij}'' - \xi_{ij}''}{\xi_{ij}'' - \xi_{ij}''}} (\frac{\xi_{ij}'' - \xi_{ij}'' - \xi_{ij}'''}{\xi_{ij}'' - \xi_{ij}''' - \xi_{ij}''' - \xi_{ij}''''}} (\frac{\xi_{ij}'' - \xi_{ij}''' - \xi_{ij}''''''''''''''''''''''''''''''''''''$			
Weights			
w _j deterministic, elicited by the clinicians / regulators / weights=c(0.30, 0.15, 0.15, 0.15, 0.25) surveys, swing-weighting, MACBETH tool) weights=c(0.30, 0.15, 0.15, 0.15, 0.25)			
Utility score			
$u(\xi_{ij}, w) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})$ us <- function (v, w) { return (sum(w*v))} us_teli = us(values[,1], weights) us_comp = us(values[,2], weights)			

dMCDA : example Telithromycin

Results: dMCDA

Benefit-riskTelithromycinComparatorutility score:0.8630.860

Conclusion from dMCDA: the benefit-risk balance of telithromycin is better than the benefit-risk balance of the comparator

But...

- Small difference
- Ignore uncertainties
- Sensitivity analyses should be conducted (varying the weights, using different criteria...)

dMCDA: conclusion

dMCDA	 ✓ Simple summary ▲ Deterministic, all sources of uncertainty are ignored 	
рМСDА		Webinar
SMAA		adour t-risk assessment
Dirichlet		G. Saint-Hilary, S. Cadour Quantitative benefit-risk assessment
SMAA		(16

Probabilistic MCDA Waddingham et al. (2016)

Fixed value: uncertainty is ignored

Random variable: uncertainty is taken into account

Quantitative benefit-risk assessment

pMCDA : example Telithromycin (1/3)

	Criterion parameters
	Ntrt=2 ; Nendpt=5; nsim=100000 # nb of simulations to obtain the posterior distributions
$\xi_{ij} \sim Beta(a, b)$ a = # events +1 b = # non-events +1 random variables instead	<pre># Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope # Parameters of the posterior beta distribution a=events+1 b=N-events+1</pre>
of single summary values	xi = array(0, c(nsim, Ntrt, Nendpt))
	<pre>for (i in 1:Ntrt) { for(j in 1:Nendpt) { xi[,i,j]=rbeta(nsim, a[i,j], b[i,j]) }}</pre>

pMCDA : example Telithromycin (2/3)

Partial value functions				
$u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}' - \xi_{ij}''} (\text{linear})$ $k_{ij}'' = \text{most preferable value}$ $\xi_{ij}'' = \text{least preferable value}$ $\xi_{ij}'' = \text{least preferable value}$ $k_{ij}'' = \text{least preferable value}$				
Weights				
w_j remain deterministic weights=c(0.30, 0.15, 0.15, 0.15, 0.25)				
Utility score				
$u(\xi_{ij}, w) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})$ random variables		us for u u	<- function (v, w) { return (sum(w*v))} _teli=us_comp=diff=vector(length=nsim) c (i in 1:nsim) { s_teli[i] = us(values[i,,1], weights) s_comp[i] = us(values[i,,2], weights) iff[i]=us_teli[i]-us_comp[i]	

pMCDA : example Telithromycin (3/3)

Results: pMCDA

• Distribution of the B-R utility scores • Statistics on the B-R utility scores

Treatment	Median (95% CrI)
Telithromycin	0.858 (0.836;0.875)
Comparator	0.854 (0.829;0.873)
Difference	0.004 (-0.028;0.032)

• Probability to be better than the comparator

pMCDA: conclusion

dMCDA	✓ Simple summary
	 Deterministic, all sources of uncertainty are ignored
pMCDA	\checkmark Takes into account uncertainty in treatment effects on the criteria
	Preferences of decision-makers (weights) are explicitly required
SMAA	
Dirichlet SMAA	

Webinar

G. Saint-Hilary, S. Cadour Quantitative benefit-risk assessment

SMAA Tervonen et al. (2011)

Assumption: the weights have a uniform distribution on a space of weights, that needs to be defined

• No information, i.e. no preference between the criteria $W = \{w \in \mathbb{D}^n | w > 0 \ \sum_{i=1}^n w = 1\}$

$$W = \{ w \in \mathbb{R}^n, w > 0, \sum_{j=1}^n w_j = 1 \}$$

- Restrictions of the space of the weights
 - Upper and/or lower bounds
 - Complete ranking of the criteria
 - Equality of weights between benefits and risks

Example for 3 criteria W₁, W₂, W₃

Figure: Ranking: $w_1 \ge w_2 \ge w_3$

SMAA: example Telithromycin (1/3)

	Criterion parameters
$\xi_{ij} \sim Beta(a, b)$ a = # events +1 b = # non-events +1 random variables instead of single summary values	<pre>Ntrt=2; Nendpt=5; nsim=100000 # nb of simulations to obtain the posterior distributions # Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope # Parameters of the posterior beta distribution a=events+1 b=N-events+1 xi = array(0, c(nsim, Ntrt, Nendpt)) for (i in 1:Ntrt) { for(j in 1:Nendpt) { xi[,i,j]=rbeta(nsim, a[i,j], b[i,j]) }}</pre>
	Partial value functions
$u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}' - \xi_{ij}''} \text{(linear)}$ $\xi_{ij}' = \text{most preferable value}$ $\xi_{ij}'' = \text{least preferable value}$	<pre># Most preferable values most = c(1, 0, 0, 0, 0) # Least preferable values least = c(0.4, 0.1, 0.1, 0.1, 0.1) pvf <- function(x, most, least) { return((x - least) / (most - least))} values = array(0, c(nsim, Nendpt, Ntrt)) for (i in 1:nsim) { values[i,,]=pvf(t(xi[i,,]), most, least)}</pre>

SMAA: example Telithromycin (2/3)

Weights		
w _j random variables with a joint uniform distribution on a weight space W	<pre># Example: use simplex.sample from package hitandrun to # generate uniform unit simplexes library(hitandrun) weights=simplex.sample(Nendpt, nsim, sort=FALSE)\$samples</pre>	
Utility score		
$u(\xi_{ij}, w) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})$ random variables	<pre>us <- function (v, w) { return (sum(w*v))} us_teli=us_comp=diff=vector(length=nsim) for (i in 1:nsim) { us_teli[i] = us(values[i,,1], weights[i,]) us_comp[i] = us(values[i,,2], weights[i,]) diff[i]=us_teli[i]-us_comp[i] }</pre>	

SMAA: example Telithromycin (3/3)

Results: SMAA

Distribution of the difference in B-R
 utility scores

Statistics on the difference in B-R utility scores

Without weight elicitation

Treatment	Median (95% CrI)
Difference	-0.005 (-0.067;0.04)

• Probability to be better than the comparator

SMAA: conclusion

✓ Simple summary dMCDA **×** Deterministic, all sources of uncertainty are ignored ✓ Takes into account uncertainty in treatment effects on the criteria pMCDA * Preferences of decision-makers (weights) are explicitly required ✓ Takes into account uncertainty in treatment effects on the criteria ✓ Does not require the elicitation of preferences to weigh the criteria **SMAA** Interpretation less straightforward Key High degree of uncertainty in the results Dirichlet **SMAA**

Dirichlet SMAA Saint-Hilary et al. (2017)

• \mathbf{w}_{j} : weights are **random variables**, following a **Dirichlet distribution** $(w_{1}, ..., w_{n}) \sim Dirichlet(\alpha_{1}, ..., \alpha_{n})$

Property:

the means of all w_i stay the same if all α_i are scaled with the same multiplicative constant, with variances getting smaller as the parameters α_i grow.

• We rewrite the Dirichlet distribution as follows:

 $(w_1, ..., w_n) \sim Dirichlet(c.(w_1^0, ..., w_n^0))$ With: (i) $0 \leq w_1^0, ..., w_n^0 \leq 1$ with $\sum_{j=1}^n w_j^0 = 1$ (ii) c, a scaling constant, that can vary from 0 to $+\infty$

Dirichlet SMAA Saint-Hilary et al. (2017)

- The variances of w_j are inversely proportional to c.
- They equal to infinity when c = 0 and to zero when $c = +\infty$.
- **Dirichlet SMAA** corresponds to:
 - pMCDA, when $c = +\infty$, as weights are deterministic $(w_j = w_j^0, j = 1, ..., n)$
 - SMAA, without weight elicitation when $w_1^0 = ... = w_n^0 = 1/n$ and c = n
- c : confidence level of the decision-makers in the elicitation of their preferences, which impact on the results can be assessed using different values of c.

Dirichlet SMAA: example Telithromycin (1/3)

Criterion parameters		
$\xi_{ij} \sim Beta(a, b)$ a = # events +1 b = # non-events +1 random variables instead of single summary values	<pre>Ntrt=2; Nendpt=5; nsim=100000 # nb of simulations to obtain the posterior distributions # Criteria = 1. Cure, 2. Hepatic, 3. Cardiac, 4. Visual, 5. Syncope # Parameters of the posterior beta distribution a=events+1 b=N-events+1 xi = array(0, c(nsim, Ntrt, Nendpt)) for (i in 1:Ntrt) { for(j in 1:Nendpt) { xi[,i,j]=rbeta(nsim, a[i,j], b[i,j]) }}</pre>	
Partial value functions		
$u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi_{ij}''}{\xi_{ij}' - \xi_{ij}''} \text{(linear)}$ $\xi_{ij}' = \text{most preferable value}$ $\xi_{ij}'' = \text{least preferable value}$	<pre># Most preferable values most = c(1, 0, 0, 0, 0) # Least preferable values least = c(0.4, 0.1, 0.1, 0.1, 0.1) pvf <- function(x, most, least) { return((x - least) / (most - least))} values = array(0, c(nsim, Nendpt, Ntrt)) for (i in 1:nsim) { values[i,,]=pvf(t(xi[i,,]), most, least)}</pre>	

Dirichlet SMAA: example Telithromycin (2/3)

	Weights		
<i>w_j</i> random variables with a Dirichlet distribution	library(gtools)		
c = confidence factor, level of confidence of the decision- makers in their weight elicitation	# Example for c=50 c=50 weights=rdirichlet(nsim,c(0.30, 0.15, 0.15, 0.15, 0.25)*c)		
Utility score			
$u(\xi_{ij}, w) = \sum_{j=1}^{n} w_j u_j(\xi_{ij})$ random variables	<pre>us <- function (v, w) { return (sum(w*v))} us_teli=us_comp=diff=vector(length=nsim) for (i in 1:nsim) { us_teli[i] = us(values[i,,1], weights[i,]) us_comp[i] = us(values[i,,2], weights[i,]) diff[i]=us_teli[i]-us_comp[i] }</pre>		

Dirichlet SMAA: example Telithromycin (3/3)

Results: Dirichlet SMAA

 Distribution of the difference in B-R utility scores

• Statistics on the difference in B-R utility scores

For a given confidence

factor (here, c=50)

Treatment	Median (95% CrI)
Difference	0.004 (-0.031;0.033)

• Probability to be better than the comparator

Dirichlet SMAA: example Telithromycin (3/3)

Varying confidence factor

Results: Dirichlet SMAA

• Probability to be better than the comparator

Taking into account the **uncertainty** of the decisionmakers in their weight elicitation

Dirichlet SMAA: conclusion

dMCDA	✓ Simple summary➤ Deterministic, all sources of uncertainty are ignored
pMCDA	 Takes into account uncertainty in treatment effects on the criteria Preferences of decision-makers (weights) are explicitly required
SMAA	 ✓ Takes into account uncertainty in treatment effects on the criteria ✓ Does not require the elicitation of preferences to weigh the criteria ✗ Interpretation less straightforward ✗ High degree of uncertainty in the results
Dirichlet SMAA	 ✓ Takes into account uncertainty in treatment effects on the criteria ✓ Takes into account uncertainty in weight elicitation, and allows flexibility by making the variance of the weights vary ✓ Permits to account for a new source of uncertainty: the level of confidence of the decision-makers in their weight elicitation ✓ All parameters have a natural interpretation: treatment effects, decision-makers' preferences and their strength of confidence

Other examples in backup slides

- dMCDA: Gardasil[®] vaccine for preventing anal cancer in males
- pMCDA: Natalizumab for the treatment of Relapsing Remitting Multiple Sclerosis (RRMS)
- Dirichlet SMAA: fictive case-study in depression (inspired by a real case)

MCDA and its extensions Conclusion

- Powerful quantitative **decision-making** tools
 - Recognized by the EMA
- **Subjectivity**: input from clinical/regulatory/patients needed to determine the criteria and their relative importance, as well as the range of preferences
 - Sensitivity analyses should be performed
 - Need to consider the various sources of uncertainty
- Relative complexity
 - Collecting and summarizing the data on multiple criteria, possibly from different sources
- Usually used late in the development → could be applied in Early development using biomarkers

38

Main references (1/2)

- EMA (2010). Benefit-risk methodology project. Work package reports: applicability of current tools and processes for regulatory benefit-risk assessment. Available at http://www.ema.europa.eu/
- IMI PROTECT Work package 5: benefit-risk integration and representation. Available at http://protectbenefitrisk.eu/
- EFSPI-SIG Benefit-risk <u>http://www.benefit-risk-assessment.com/welcome-to-the-benefit-risk-blog-of-the-efspi-benefit-risk-sig/</u>
- Mt-Isa, S., Ouwens, M., Robert, V., Gebel, M., Schacht, A., and Hirsch, I. (2015). Structured benefit–risk assessment: a review of key publications and initiatives on frameworks and methodologies. *Pharmaceutical Statistics* 15, 324–332. doi: 10.1002/pst.1690
- Mt-Isa, S. *et al.* (2014). Balancing benefit and risk of medicines: a systematic review and classification of available methodologies. *Pharmacoepidemiology and Drug Safety* 23, 667-678. doi: 10.1002/pds.3636
- Mussen, F., Salek, S., and Walker, S. (2007). A quantitative approach to benefit-risk assessment of medicines—part 1: the development of a new model using multi-criteria decision analysis. *Pharmacoepidemiology and Drug Safety* **16**, S2–S15.

Main references (2/2)

- Nixon, R., Dierig, C., Mt-Isa, S., Stockert, I., Tong, T., Kuhls, S., Hodgson, G., Pears, J., Waddingham, E., Hockley, K., and Thomson, A. (2016). A case study using the PrOACT-URL and BRAT frameworks for structured benefit risk assessment. *Biometrical Journal* 58, 8–27.
- Tervonen, T., Van Valkenhoef, G., Buskens, E., Hillege, H. L., and Postmus, D. (2011). A stochastic multicriteria model for evidence-based decision making in drug benefit–risk analysis. *Statistics in Medicine* 30, 1419–1428. DOI: 10.1002/sim.4194.
- Waddingham, E., Mt-Isa, S., Nixon, R., and Ashby, D. (2016). A Bayesian approach to probabilistic sensitivity analysis in structured benefit–risk assessment. *Biometrical Journal* **58**, 28–42.
- **Saint-Hilary, G.**, Cadour, S., Robert, V. and Gasparini, M. (2017). A simple way to unify multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) using a Dirichlet distribution in benefit–risk assessment. *Biometrical Journal (early view online).* doi: 10.1002/bimj.201600113
- Marcelon, L., Verstraeten, T., Dominiak-Felden, G., Simondon, F. (2016). Quantitative benefit-risk assessment by MCDA of the quadrivalent HPV vaccine for preventing anal cancer in males. *Expert Rev Vaccines* 15 (1): 139 48. doi: 10.1586/14760584.2016. 1107480

Back-up slides

G. Saint-Hilary, S. Cadour Quantitative benefit-risk assessment

40

Webinar

(...) the MAH has used the 'problem, objectives, alternatives, consequences, trade-offs, uncertainty, risk attitude, linked decisions' (PrOACT-URL) and the multi criteria decision analysis' (MCDA) approaches, which are two similar and wellstructured approaches to estimate the overall benefit-risk balance, both on a qualitative (PrOACT and MCDA) and a quantitative (MCDA) point of view. These two approaches allow taking into consideration all the potential benefits and all the potential risks within a single evaluation.

Quantitative benefit-risk assessment by MCDA of the quadrivalent HPV vaccine for preventing anal cancer in males

Assessmentreport

25 April 2014

EUROPEAN MEDICINE

Lydie Marcelon, Thomas Verstraeten, Geraldine Dominiak-Felden & François Simondon

To cite this article: Lydie Marcelon, Thomas Verstraeten, Geraldine Dominiak-Felden & François Simondon (2016) Quantitative benefit-risk assessment by MCDA of the guadrivalent HPV vaccine for preventing anal cancer in males, Expert Review of Vaccines, 15:1, 139-148, DOI: 10.1586/14760584.2016.1107480

Proact-url Generic qualitative framework to structure decision problems

dMCDA Quantitative approach to synthetize the results

Benefit-Risk utility score $u(\xi_i, w) = w_1 u_1(\xi_{i1}) + \ldots + w_n u_n(\xi_{in})$

For

Data sources

Identification of key benefits and risks	Weights	Т	reatment performances on the criteria
1) Sanofi Pasteur MSD clinicians and epidemiologists, with working experience on the qHPV vaccine		•	Merck/Sanofi Pasteur MSD- sponsored clinical trials
2) Panel of six external experts		•	Post-authorization study reports

Treatment groups

- Gardasil®
- No vaccination

Webinar

For

For

G. Saint-Hilary, S. Cadour Quantitative benefit-risk assessment

Results: dMCDA

Assessmentrepo

EUROPEAN

25 April 2014

Gardasil[®] No vaccination Benefit-risk utility score: **46** 66

Sensitivity analyses: results are robust to changes in

- the **weight** assigned to the individual criteria or nodes
- the **model parameters** (e.g. inclusion of data less favorable to the vaccine or excluding all beneficial effects other than anal cancer prevention)

"MCDA is a method considered to be **useful as a complementary and supportive tool**. Through a number of steps the purpose is to **bring together evaluations of** options on both benefits and risks into one overall evaluation taking into account what is considered best current evidence."

Conclusion

"The benefit-risk balance [of Gardasil[®]] is considered positive."

For

 \rightarrow Rare serious side effect in an effective treatment for a serious disease

Was the decision right to keep natalizumab on the market given that increased episodes of PML were observed?

Post-

Data sources

Identification of key benefits and risks	Weights	Treatment performances on the criteria
Individual experts	Patient representatives	Mainly:
(based largely on data from the SPC and the	(Decision conference	• EPARs
EPAR for natalizumab)	held on 23 Sept 2011)	Literature search

EPAR: European public assessment reports SPC: Summary of Product Characteristics

Treatment groups

- Natalizumab
- Placebo

- **Glatiramer** Acetate
- **Beta-interferon**

Source: http://protectbenefitrisk.eu/Nmethtested.html

Post-

Post-

Results: pMCDA

Distribution of the B-R utility scores • Statistics on the B-R utility scores

Median (95% CrI)
0.92 (0.92;0.93)
0.96 (0.95;0.96)
0.93 (0.92;0.94)
0.93 (0.92;0.94)

 Probability to be better than the control

Source: Waddingham 2016

Treatment	Probability Treatment > Placebo
Natalizumab	100%
Beta-interferon	80%
Glatiramer Acetate	79%

Post-

Conclusion

Despite the incidence of the serious rare adverse events PML, • Natalizumab has the best benefit-risk profile

Post-

Example 3: Fictive case-study in depression

Context: Go/No-Go Ph III

Results from Ph II

- Effective treatment
- **Dose-response relationship** for efficacy and safety
- Hypokalemia may be a serious adverse effect

Considered strategies for Ph III

- Low dose
- High dose
- Low dose with possible dose-increase
- High dose with potassium supplementation

Which dose/regimen has the best chance to have a positive Benefit-Risk balance versus Placebo in Phase III?

Example 3: Fictive case-study in depression

(inspired by a real case)

High dose

Data sources

Identification of key benefits and risks	Weights	Treatment performances on the criteria
Sponsor multidisciplinary team (clinical, pharmacovigilance, regulatory, statistics etc.)		Phase II trial

Treatment groups

- Low dose Low dose with possible dose-increase
 - High dose with potassium supplementation

Note: details about the combination of new hypotheses with the data (dose-increase, potassium supplementation) and about predictions of the next study are not included in this presentation

During development Example 3: Fictive case-study in depression (inspired by a real case)

Criteria and weights

But decision-makers are not quite confident in their weight elicitation...

Webinar

Example 3: Fictive case-study in depression (inspired by a real case)

Results: Dirichlet SMAA

 Predictive distribution of the differences in B-R utility scores vs Placebo

 Statistics on differences in B-R utility scores vs Placebo

Treatment	Diff vs Placebo Median (95% CrI)
Low dose	0.07 (-0.04;0.18)
High dose	-0.04 (-0.16;0.08)
Dose-increase	0.03 (-0.08;0.14)
High dose suppl	0.10 (-0.02;0.21)

Example 3: Fictive case-study in depression

Results: Dirichlet SMAA

• Probability to be better than placebo in the next Ph III

Taking into account the **uncertainty** of the decision-makers in their

elicitation of preferences (weights)

Example 3: Fictive case-study in depression

Conclusion

• High dose with potassium supplementation seems to be the regimen with the best benefit-risk balance vs placebo