

Using causal graphs to understand estimands and estimation

Ian White <ian.white@ucl.ac.uk>

MRC Clinical Trials Unit at UCL

PSI one day event on Estimands and Causal Inference

Reading, 29th January 2019

Background

- Causal inference is a methodology for drawing causal conclusions (what happens if...?) from data
 - clarifies the assumptions needed
 - identifies when standard statistical methods fail
 - proposes new classes of statistical methods
- Directed acyclic graphs (the "causal graphs" of the title) are widely used in causal inference
- Causal inference is usually used in observational studies, but causal questions also arise in RCTs
 - especially around estimands: "hypothetical" and "principal stratum" strategies for defining estimands

Aim

- To discuss estimands and estimation
 - in RCTs with intercurrent events in the form of treatment changes
 - using directed acyclic graphs (causal graphs, DAGs)
- A new way of looking at existing methods
 - hopefully informative

- 1. What is a DAG, and how do we use them?
- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

1. What is a DAG, and how do we use them?

- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

Idea of DAGs

- Graph: set of nodes (variables) which may be connected or unconnected
- Directed: connections are arrows
- Acyclic: no loops
- Absence of an arrow implies independence
 - here, A and Y are independent, conditional on C
- I'll assume a "causal DAG" in which arrows may be interpreted as causal effects
 - changing C affects A and Y
 - changing A doesn't affect Y
- Requires that "the common causes of any pair of variables in the graph are also in the graph"
 - Hernán MA, Robins JM (2019). Causal Inference.
 Chapman & Hall/CRC, forthcoming & on the web

Paths in DAGs imply potential associations

Front-door paths from A to Y: start A→

Back-door path from A to Y: starts A←

(b)
$$A \longrightarrow M \longrightarrow Y$$

(c)
$$A \longrightarrow M$$
 Y

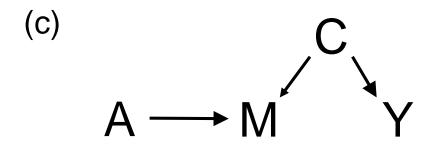
 $A \qquad \qquad Y$

A front-door path is causal if all arrows point from A to Y (a,b but not c)

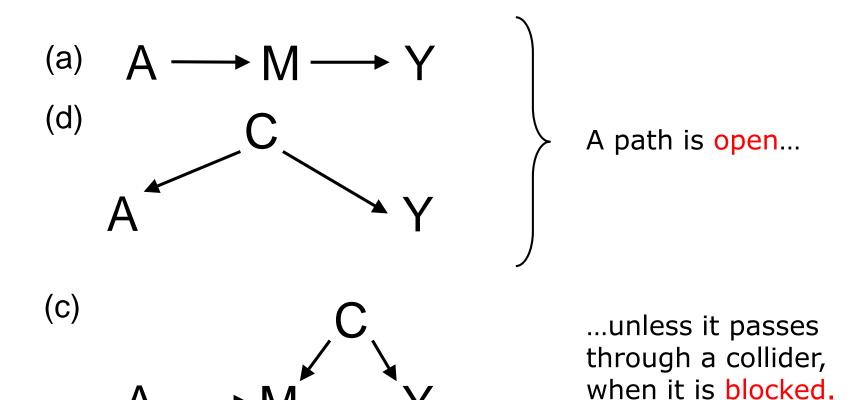
A back-door path is never causal

Colliders

- Here we have a path of form ... → M ← ...
- M is a collider on this path

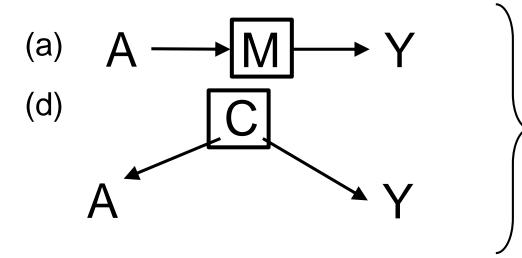


Open and blocked paths in DAGs



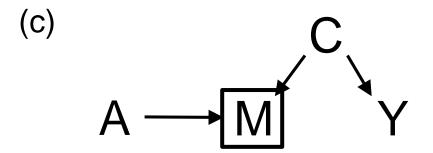
Open paths contribute to associations. Blocked paths don't.

Controlling for a variable



Box indicates controlling in analysis

Controlling for a noncollider blocks a path

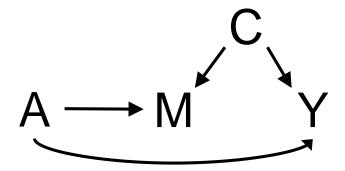


Controlling for a collider opens a path (if it's otherwise open)

Open paths contribute to associations. Blocked paths don't.

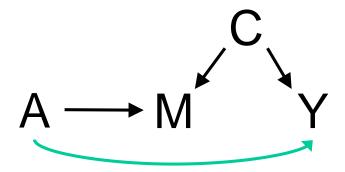
Key point

- An observed association has a causal interpretation if all open paths are causal
- Consider this DAG

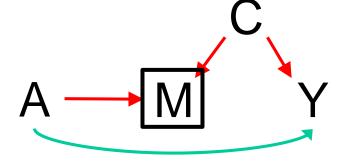


Key point

- An observed association has a causal interpretation if all open paths are causal
- Consider this DAG



One open path: observed A-Y association is causal



Two open paths: observed A-Y association is not causal

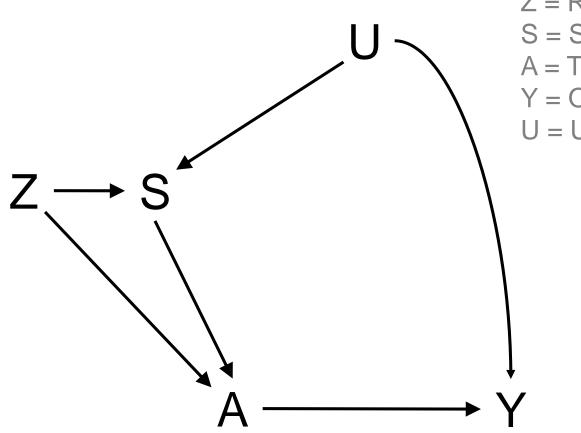
- 1. What is a DAG, and how do we use them?
- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

Intercurrent events

Assume we have various types of intercurrent events (treatment changes) and we have decided how to handle them

- Events handled through a "treatment policy" strategy
 - we ignore these in DAG & analysis
- Events handled through a "composite strategy"
 - we include these in outcome Y
 - otherwise ignore them
- Events handled through a "hypothetical strategy"
 - we define S to indicate the occurrence of such events (S for switching, but could be any treatment change)
 - and A to be the actual treatment then followed
 - we include S and A in the DAG

DAG with treatment changes just after baseline



Z = Randomization

S = Switching treatment

A = Treatment

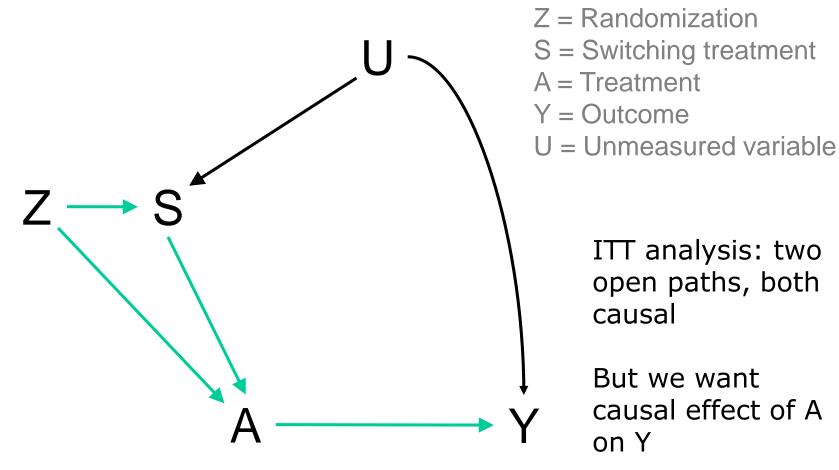
Y = Outcome

U = Unmeasured variable

We want causal effect of A on Y

But first we'll look at causal effect of Z on Y

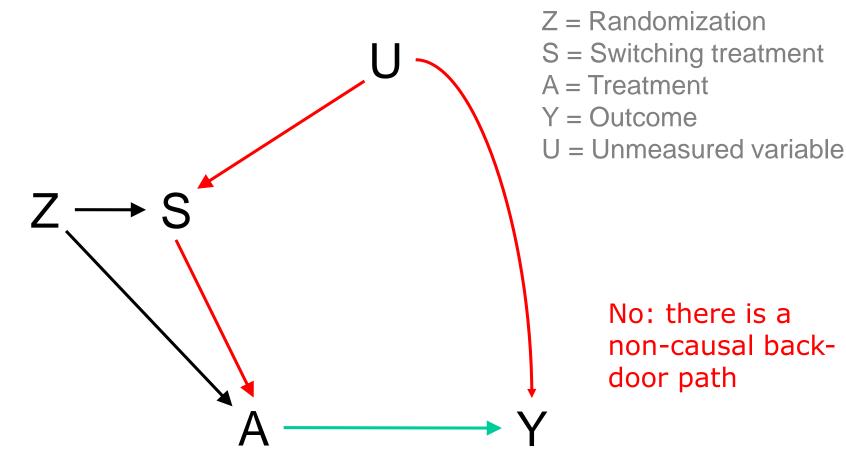
Causal effect of Z on Y is easy



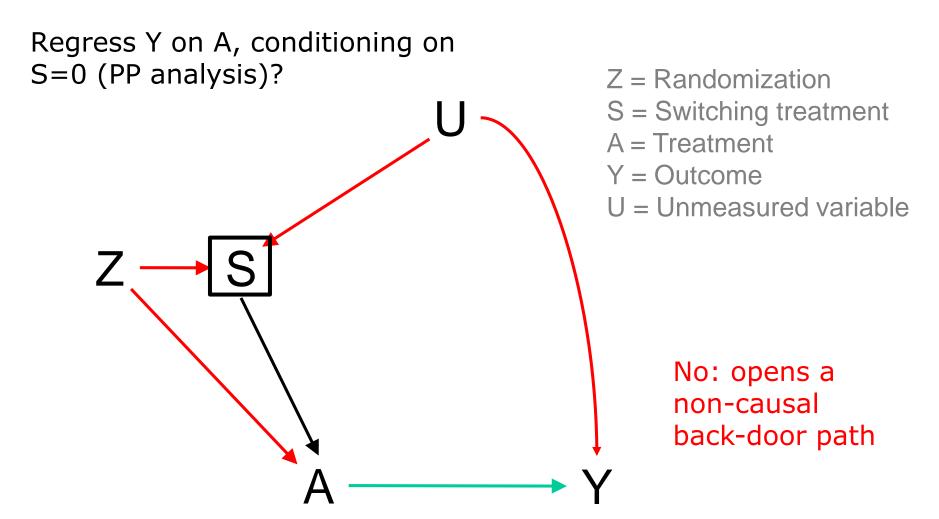
- 1. What is a DAG, and how do we use them?
- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

Estimating causal effect of A on Y is harder

Regress Y on A?

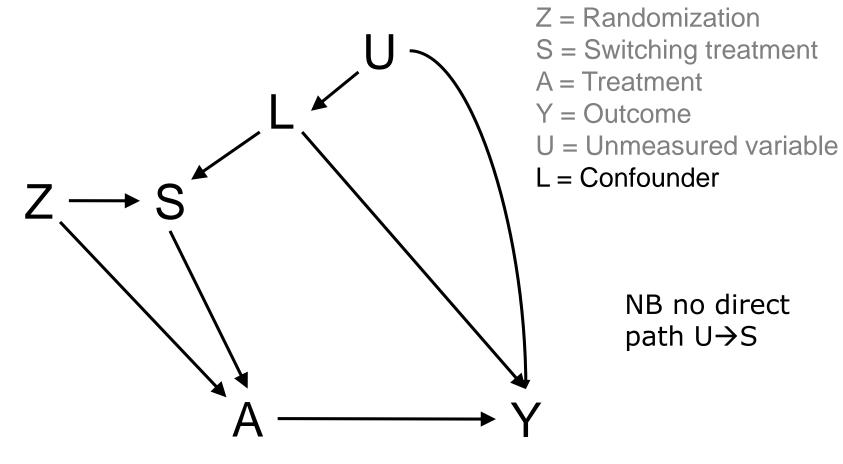


Per-protocol (PP) analysis doesn't gives effect of A on Y



But what if we measure all confounders L?

New DAG using L

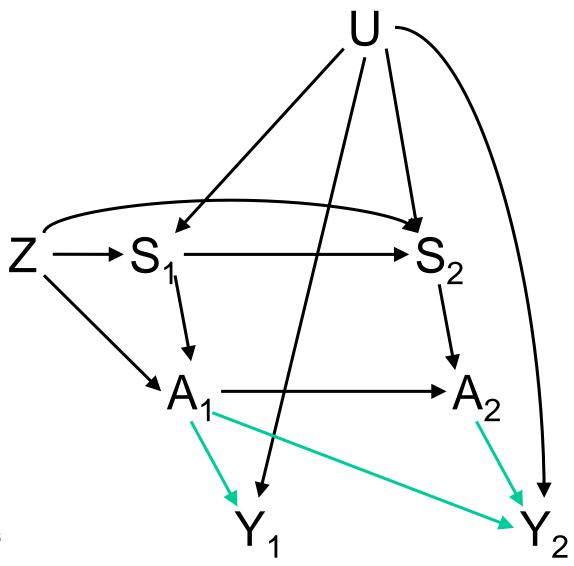


PP is OK if we measure all confounders

Regress Y on A, conditioning on S=0 and L (adjusted PP analysis)? Z = RandomizationS = Switching treatment A = Treatment Y = OutcomeU = Unmeasured variable L = Confounder OK! Back-door path is blocked by conditioning on L as well as S=0

- 1. What is a DAG, and how do we use them?
- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

DAG with treatment changes over time



Here illustrated with only 2 intervals, for clarity

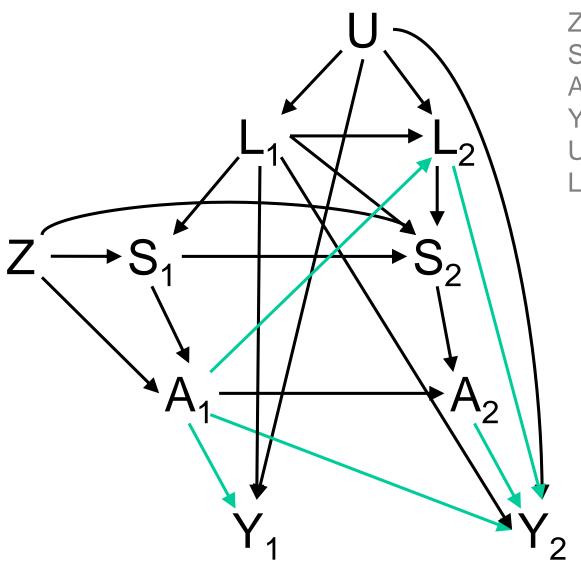
Y₁, Y₂,... could be quantitative or binary (for time-to-event outcome)

We want

- effect of A₁ on Y₁
- effects of A₁ and A₂ on Y₂

3 causal paths

DAG with treatment changes over time + no unmeasured confounders



Z = Randomization

S = Switching treatment

A = Treatment

Y = Outcome

U = Unmeasured variable

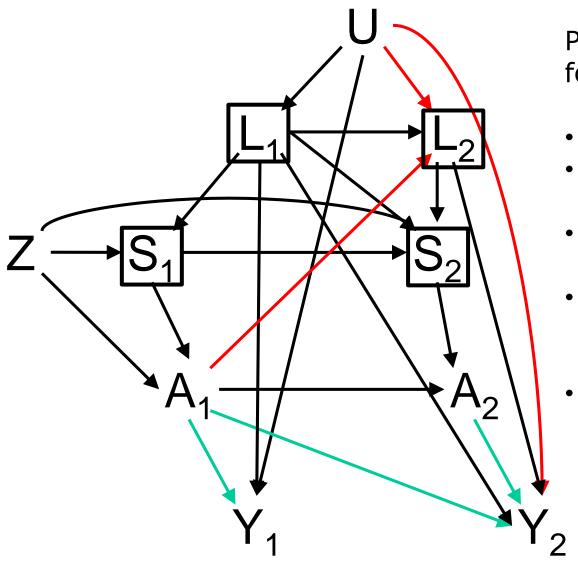
L = Confounder

We want

- effect of A₁ on Y₁
- effects of A₁ and A₂ on Y₂

4 causal paths

DAG with treatment changes over time + no unmeasured confounders

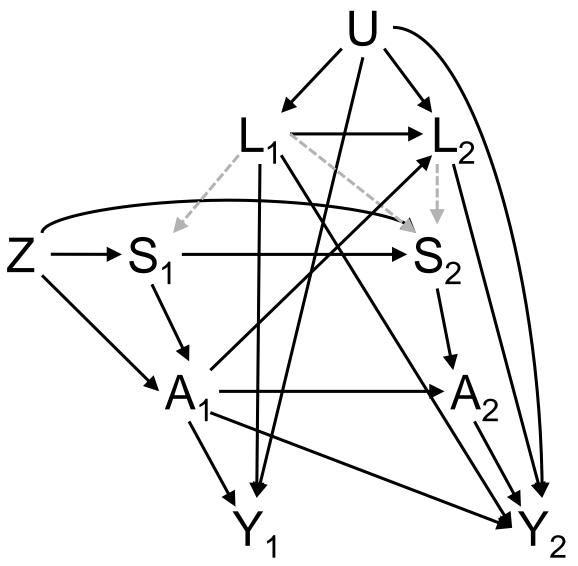


PP analysis controlling for L_1 and L_2 ?

- No!
- Opens non-causal path via U
- Blocks causal path via L₂
- Wrong estimation of the effects of A₁ and A₂ on Y₂
- "Time-varying confounding"

- 1. What is a DAG, and how do we use them?
- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

DAG with treatment changes over time + no unmeasured confounders: IPCW

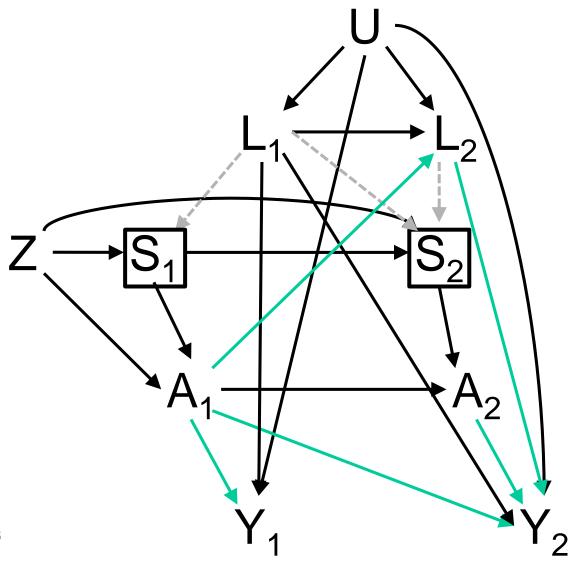


IPCW = inverseprobability-ofcensoring weighting

Weight by 1/p(S=0|past L's)

 removes dashed arrows L→S

DAG with treatment changes over time + no unmeasured confounders: IPCW

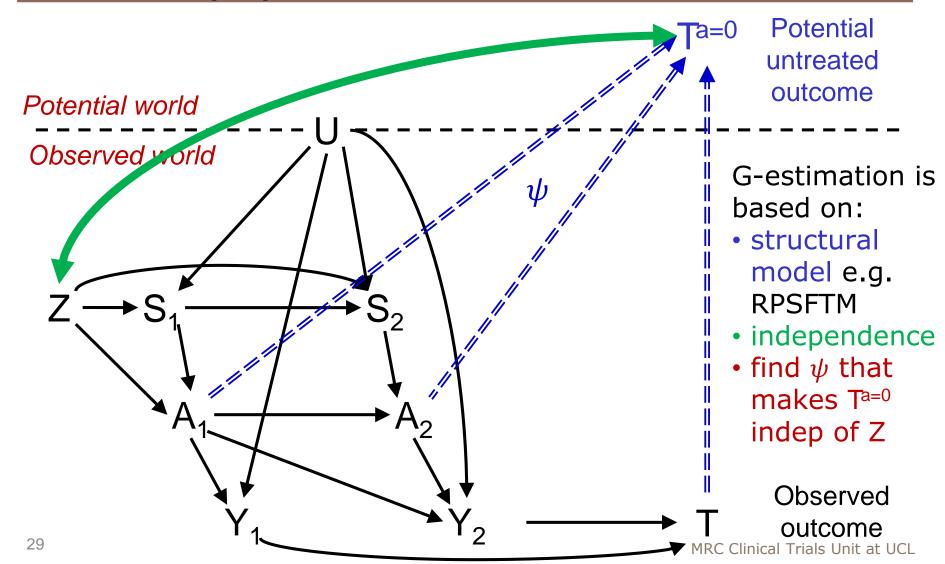


IPCW = inverseprobability-ofcensoring weighting

Weight by 1/p(S=0|past L's)

- removes dashed arrows L→S
 and use PP (condition on S=0 i.e. censor at S)
- No open backdoor paths now

DAG with treatment changes over time and unmeasured confounders: instrumental variable (IV) / G-estimation method



Modelling challenges

- PP and IPCW condition on S=0
 - so A=Z in the data used
 - so we only have to model the effect of randomised treatment
- Structural model / RPSFTM approach doesn't condition on S=0
 - have to model A → outcome
 - gets harder as A gets more complex

Two-stage method

- Another method that works well is the two-stage method (Latimer et al 2014)
 - uses observational analysis within arms to estimate effect of treatment in S=1
- Like IPCW, based on no unmeasured confounders
- Like IV method, requires modelling A → outcome
- DAGs omitted here

- 1. What is a DAG, and how do we use them?
- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

A late-stage cancer trial

- Consider a trial of SoC+new drug vs. SoC+placebo
- Outcomes: PFS (prog-free survival), OS (overall surv)
- Intercurrent events for OS analysis:
 - 1. Patients may stop new drug
 - use treatment-policy estimand
 - Placebo patients often start new drug after progression
 - use hypothetical estimand
- We may be confident in defining a causal model that applies in both arms
 - use RPSFTM?
- We may be confident that we've measured all timedependent confounders
 - use IPCW / two-stage?

An epilepsy trial

- Consider a trial of a new anti-epilepsy medicine
- Outcome: time to seizure-free 12 months
- Intercurrent events:
 - patients with inadequate control may switch to any of 4 other drugs
 - use hypothetical estimand
- We're unlikely to be confident about a causal model for all drugs (& doses)
- Important to measure all time-dependent confounders and use IPCW / two-stage

- 1. What is a DAG, and how do we use them?
- 2. DAG for a RCT with intercurrent events (treatment changes) just after baseline
- 3. Estimation methods for this setting
- 4. DAG for a RCT with intercurrent events (treatment changes) occurring over time
- 5. Estimation methods for this setting
- 6. Examples
- 7. Conclusions

Acknowledgements

- Uwe Siebert & Feli Kühne (UMIT, Austria)
- Nick Latimer (Sheffield)
- We give a course, "Causal Inference in Observational Studies and Clinical Trials Affected by Treatment Switching: A Practical Hands-on Workshop"
 - next: 18-21 March 2019, Hall-in-Tirol, Austria
 - search for "UMIT Causal"

Conclusions

- DAGs may be a useful way to understand why analysis methods do / don't work
- Including intercurrent events in the DAG means adopting a hypothetical estimand for them