Integrative modelling of experimental Medicine clinical data

Fabio Rigat, Statistical Innovation Group

March 2017

Outline

- From translational Science to translational Medicine through Experimental Medicine (EM)
 - ▶ EM studies: what they are and what they are not
- Statistical Learning for EM:
 - methods
 - role of pharmacology
 - ★ pharmacokinetics (PK) and target engagement (TE) models
 - ★ estimation of the probability of pharmacological success (POPS)
 - from biomarkers to clinical endpoints
 - ★ assumptions needed to leverage FTH results in Phase II planning
 - ★ prediction of the probability of clinical success

From translational Science to translational Medicine

- **The problem** (Wehling, M. [2008]): "Despite increased [...] investments into R&D, the output of novel medicines has been declining dramatically"
- What is needed: "Improvement of translation is thought to become a remedy as one of the reasons for this widening gap [...] is the difficult transition between preclinical and clinical stages in R&D"
- A solution: "This goal [...] relates to biomarker development and predictivity assessment, biostatistical methods, [...] accelerated early human study designs and decision algorithms"

EM studies: what they are and what they are not

- Experimental Medicine (MRC): is "Investigations undertaken in humans [...] to demonstrate proof-of-concept evidence of the validity and importance of new discoveries or treatments"
- A clinical study will be defined as EM iff it demonstrates all the following principles:
 - A small study answering focussed and specific questions about the MOA and potential links to efficacy,
 - ii. Man as the experimental model,
 - iii. Biomarker rich including biomarker endpoints,
 - iv. Study has clear, pre-defined go/no go criteria.
- EM applies **abductive reasoning** to clinical trial design and analysis (Peirce [1878], Popper and Miller [1987], Ward et al [1999])

Statistical learning for EM: methods

- Evidence against null hypotheses is not sufficient because "go/no-go" decisions require magnitude, precision and estimated relations among multiple endpoints.
- Assumptions:
 - priors for model and population structure require pharmacological and epidemiological bases to ensure interpretable results.
 - priors for model parameters require meta-analysis, elicitation or shrinkage mechanisms improving the study operational characteristics
- Estimation: we use MCMC to approximate posterior inferences.
- Model assessment: comprise biological plausibility and weigh model fit and predictive power against model complexity (Occam's razor).

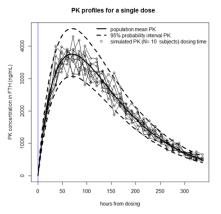
Statistical learning for EM: role of pharmacology

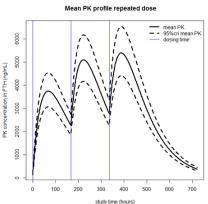
A necessary condition for EM trial success is **pharmacological success** (Morgan, P. [2012]), i.e.:

- exposure at site of action (PK) and
- target binding and engagement (TE) and
- expression of functional pharmacological activity (biomarkers)
- Statistical models are needed to quantify the links between:
 - i) treatment and PK,
 - ii) PK and TE,
 - iii) TE and biomarkers and
 - iv) biomarkers and clinical efficacy.

Statistical learning for EM: two-compartments PK

• PK(t) \sim LogNormal(mean = log($\mu_{PK}(t)$) - $\sigma^2/2$, SD = σ) (1) with $\mu_{PK}(t) := dose(0)/V \times Ka/(Ka-Kel) \times (e^{-Ka \times t} - e^{-Kel \times t})$

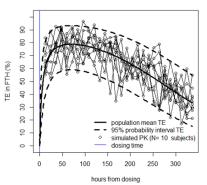




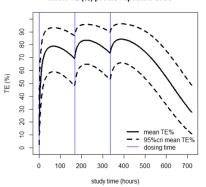
Statistical learning for EM: TE prediction model

- ullet TE_{FTH}(t) \sim Beta(mean = $1/(1+EC50/\mu_{PK}(t))$, variance = u) (2)
- $\mathsf{TE}_{\mathsf{Patient}}(\mathsf{t}) := \gamma \times \mathsf{TE}_{\mathsf{FTH}}(\mathsf{t})$ with conversion factor $\gamma \in (0,1)$

TE (%) profile for a single dose



Mean TE (%) profile repeated dose



8 / 18

Example: POPS definition and estimation for a phase II repeated dose clinical trial

 Pharmacological success of one trial is defined here for any combination of sample size (N), dose (D) and dosing times (t_k) for k=1,...,K as:

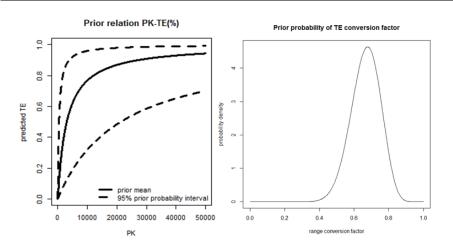
$$PS(N,D,t_{1:K}):=1_{\{(\% \text{ subjects with PK} < au_{PK} \text{ and TE}\% > au_{TE}) > \pi\}}$$

• The corresponding probability of pharmacological success is:

$$POPS(N,D,t_{1:K}) := \%$$
 trials achieving $PS(N,D,t_{1:K})$

- POPS(N,D,t_{1:K}) is estimated by *clinical trial simulation*
 - When relying only on FTH PK data, simulation of TE% data needs priors for the parameters relating
 - ★ PK to TE% in healthy subjects and
 - ★ TE% in healthy subjects to that in patients

Statistical learning for EM: TE priors



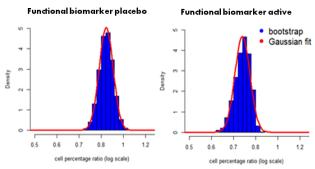
Estimated POPS from FTH PK data for two designs

Low dose at 0,14,28 days				High dose at 0,14,28 days			
Sample Size	%<τ _{PK}	%>ττε	POPS	Sample Size	%<т РК	%>ττε	POPS
20	100%	31%	31%	20	88%	71%	61%
30	100%	31%	31%	30	93%	71%	66%
40	100%	31%	31%	40	97%	71%	69%
100	100%	31%	31%	100	100%	71%	71%

- Low dose: all PK Cmax< au_{PK} and few mean(TE%) > au_{TE}
- High dose:
 - ▶ the proportion of PK Cmax< τ_{PK} increases in sample size
 - ▶ the proportion of subjects achieving sufficient TE% is constant in sample size due to the high uncertainty in the TE priors used here

Measurement of functional biological activity

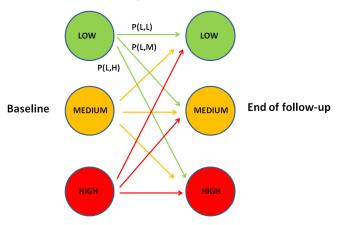
 Treatment with an investigational molecule causes a decrease in a biomarker mediating infammation at the site of action in a FTH study



- This evidence can be leveraged when planning a Phase II study if
 - biomarker changes in FTH predict those to be measured in patients,
 - the biomarker is a correlate of the clinical endpoint of interest.

An ordinal-valued Phase II clinical endpoint

 Consider a clinical endpoint measured on a three-rungs ordinal scale (e.g. a validated clinical score)



Simulation of clinical outcomes in patients from correlate biomarker results in FTH

 The FTH study shows the frequencies of healthy subjects exhibiting a low, medium or high biomarker ratios

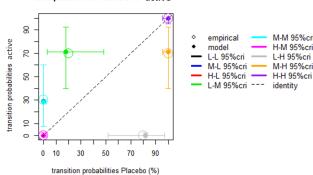
Treatment	Proportion of subjects with biomarker ratios falling within each class					
group	< τ _R	≥ TR and < TM	≥ T M			
Placebo	0%	25%	75%			
Active	12%	84%	4%			

• Clinical trial simulation: these frequencies are taken as estimates of individual Multinomial transition probabilities from *any* baseline value and towards each of their end of follow-up values

Bayesian inference from simulation results

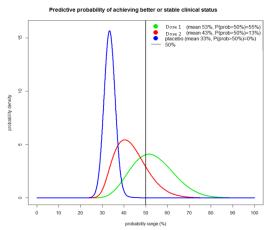
- Sufficient statistics of the simulated data within arm: number of patients whose clinical status changes between each pair of rungs
- Data analysis
 - within arm: Multinomial-Dirichlet estimates of transition probabilities,
 - between arms: compare posterior distributions of transition rates.

Comparison of Placebo to active

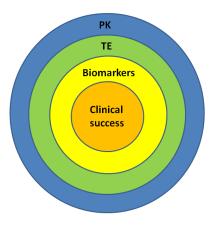


Marginal predictive distributions of transition rates

• The probability that patients will achieve stable or better clinical states is 33% for placebo, 43% for the low dose and 53% for the high dose



Thank you for Your attention



Acknowledgements: Nicky Best, Jacquie Christie, Stefano Zamuner, Kirsty Hicks, Chiara Zecchin, Shan Pan and many others in GSK

References: EM, statistics, pharmacology

- 1 C.Bernard (1865) Introduction a letude de la medecine experimentale. Paris: Flammarion (and An Introduction to the Study of Experimental Medicine MacMillian publishing company, New York, 1927).
- 2 Bruce H. Littman and Stephen A. Williams (2005) The ultimate model organism: progress in experimental medicine NATURE REVIEWS, DRUG DISCOVERY, 4. pp. 631-638
- 3 Richardson, S.W. and Wilson, M.C. and Nishikawa, J. And Hayward, R.S.A. (1995) The well-built clinical question: a key to evidence-based decisions. ACP J Club;123(3):A12
- 4 D. Spiegelhalter et al (2004) Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Wiley.
- 5 Gelman A., Carlin J.B., Stern H.S., Rubin D.B. (2004) Bayesian Data Analysis. Chapman and Hall.
- 6 French, S. and Insua, D. R. (2000) Statistical Decision Theory. Kendall's Library of Statistics, Vol. 9. Arnold.
- 7 Berger, J.O. (2013) Statistical decision theory. Foundations, methods and concepts. Springer Series in Statistics
- 8 Lindley, D.V. (1973) Making Decisions. John Wiley, London.
- 9 Goodman, S.N. (1999) Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy. Ann Intern Med.;130:995-1004
- 10 Ward, T. et al (1999) Abductive Method and Clinical Assessment in Practice. Behaviour Change, Vol. 16, pp. 49-63
- 11 K. Popper and D. W. Miller (1987) Why Probabilistic Support is not Inductive. Phil. Trans. Royal Soc. London. Series A, Vol. 321, No. 1562, pp. 569-591
- 10 Sheiner, L.B. (1997) Learning versus Confirming in Clinical Drug Development. Clin. Pharm. Ther., 61, pp. 275-291
- 11 Morgan, P. et. al. (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discovery Today, 17, pp. 419-424
- 12 Vicini P. and van der Graaf P.H. (2013) Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan? Clin Pharmacol Ther, 93(5), pp. 379-81
- 13 Marshall, S. F., et al. (2016) Good Practices in ModelInformed Drug Discovery and Development: Practice, Application, and Documentation. CPT: pharmacometrics & systems pharmacology, vol 5.3, pp. 93-122

