Resampling complex time-to-event data without individual patient data, with a view toward recurrent events

PSI One Day Meeting: Time-to-Event and Recurrent Event Endpoints in Clinical Trials

Tobias Bluhmki October 29th, 2019

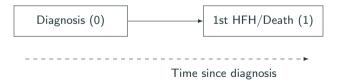
Institute of Statistics, Ulm University, Germany

Typical primary efficacy analysis (here: heart failure): Time-to-first (composite) event including, e.g.,

- first heart failure hospitalization (HFH)
- first major adverse cardiovascular event (MACE)
- cardiovascular death (CVD)
- non-cardiovascular death (NCVD)
- ..

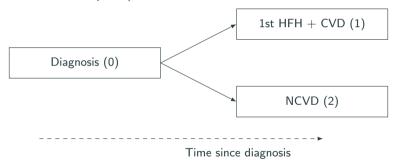
Typical primary efficacy analysis (here: heart failure): Time-to-first (composite) event including, e.g.,

- first heart failure hospitalization (HFH)
- first major adverse cardiovascular event (MACE)
- cardiovascular death (CVD)
- non-cardiovascular death (NCVD)
- ..
- ⇒ **Standard survival setting** (Cox, Kaplan-Meier, log-rank, etc.)



• Box ê 'state', Arrow ê 'Transition'

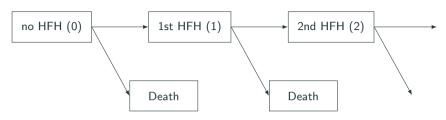
- Interest in the event type: Decomposition of composite endpoint into its single components
- Competing risks model: Time until first event + type of first event (cause-specific Cox, cumulative incidence function, Fine & Gray, etc.)



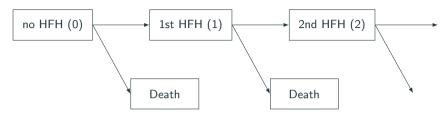
- Time-to-first analysis: All subsequent events are 'ignored' ⇒ Intermediate events informative?
 - May influence outcome (clinical events, treatments)
 - May give important information on the
 - Effect of treatment/covariates on the endpoint before and after intermediate event
 - Occurrence of intermediate events themselves
 - Decreasing event rates potentially lead to infeasible samples sizes

- Time-to-first analysis: All subsequent events are 'ignored' ⇒ Intermediate events informative?
 - May influence outcome (clinical events, treatments)
 - May give important information on the
 - Effect of treatment/covariates on the endpoint before and after intermediate event
 - Occurrence of intermediate events themselves
 - Decreasing event rates potentially lead to infeasible samples sizes
- Multistate methodology can help us to ...
 - appropriately describe the course of disease
 - account for, e.g., a positive association between HFHs and (CV) death
 - quantify/assess treatment effects

Examples: Recurrent events (without duration)

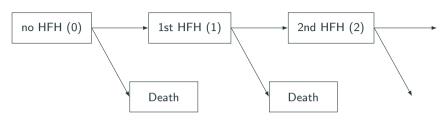


Examples: Recurrent events (without duration)



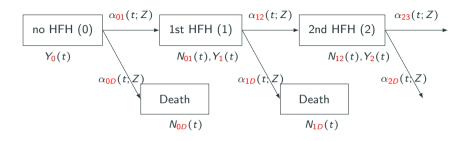
- Multistate Model: Concept to connect 'clinical states' and potential transition between these states
- Number of states usually finite
- Transient states vs. absorbing states

Examples: Recurrent events (without duration)



- Multistate Model: Concept to connect 'clinical states' and potential transition between these states
- Number of states usually finite
- Transient states vs. absorbing states
- Notation:
 - $N_{\ell m}(t)$ = number $\ell \to m$ transitions up to time t
 - $Y_{\ell}(t)$ = at risk indicator for transition out of state ℓ (accounts for periods not at risk, here, censoring or death)
 - Z covariate(s) (may be time-dependent, Z(t))

A hazard-based perspective



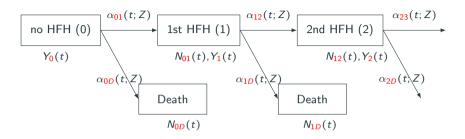
The key-quantities are the **intensities**, which can be seen as the **instantaneous 'risk'** of a transition (event) given the past information:

$$\lambda_{\ell m}(t) \mathrm{d}t = \mathbb{P}(\ell \to m \text{ transition between } t \text{ and } t + \mathrm{d}t | \mathsf{Past})$$

$$\stackrel{!}{=} \alpha_{\ell m}(t; Z) \mathrm{d}t \cdot Y_{\ell}(t),$$

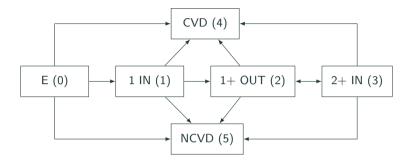
where $\alpha_{\ell m}$ is a non-negative deterministic function (transition-specific hazard)

A hazard-based perspective



- Poisson Regression (parametric): $\alpha_{01}(t; Z) = \alpha_{02}(t; Z) \dots \equiv \alpha \cdot \exp(\beta Z)$
- Andersen-Gill Model (semi-parametric): $\alpha_{01}(t; Z) = \alpha_{02}(t; Z) \dots \equiv \alpha(t) \cdot \exp(\beta Z)$, with $\alpha(t)$ unspecified
- Prentice-Williams Peterson Model (semi-parametric): $\alpha_{(k-1)k}(t;Z) = \alpha_k(t) \cdot \exp(\beta Z)$, with $\alpha_k(t)$ unspecified

Another Example: Recurrent Events (with duration)



E: 'event-free'; 1st HF admission to hospital: '1 IN'; recurrent HF admission to hospital: '2+ IN'; discharge alive from hospital: '1+ OUT'

- See e.g, Bakal et al. (2014); leva et al. (2017)
- Competing events 'CV death' & 'non-CV death' + recurrent heart failure hospitalizations admissions
- Hospital durations

- Nelson-Aalen estimator $\widehat{A}_{\ell m}(t) = \sum\limits_{u \leq t} \frac{\mathrm{d}N_{\ell m}(u)}{Y_{\ell}(t)}$ non-parametrically estimates $A_{\ell m}(t) = \int_0^t \alpha_{\ell m}(u) \mathrm{d}u$
- Aalen-Johansen estimator $\widehat{P}_{\ell j}(s,t)$ generalizes the Kaplan-Meier estimator to multiple states and estimates the transition probability $P_{\ell j}(s,t) = \mathbb{P}(\text{state } j \text{ at time } t| \text{ state } \ell \text{ at time } s)$
- Nota Bene: One-to-one relation between hazards and probabilities (generally) not given anymore → all hazards have to be taken into account (Austin and Fine, 2017)

- Nelson-Aalen estimator $\widehat{A}_{\ell m}(t) = \sum\limits_{u \leq t} \frac{\mathrm{d}N_{\ell m}(u)}{Y_{\ell}(t)}$ non-parametrically estimates $A_{\ell m}(t) = \int_0^t \alpha_{\ell m}(u) \mathrm{d}u$
- Aalen-Johansen estimator $\widehat{P}_{\ell j}(s,t)$ generalizes the Kaplan-Meier estimator to multiple states and estimates the transition probability $P_{\ell j}(s,t) = \mathbb{P}(\text{state } j \text{ at time } t| \text{ state } \ell \text{ at time } s)$
- **Nota Bene:** One-to-one relation between hazards and probabilities (generally) **not** given anymore → all hazards have to be taken into account (Austin and Fine, 2017)

Multistate models allow for the formulation (and estimation) of alternative estimands:

- Nelson-Aalen estimator $\widehat{A}_{\ell m}(t) = \sum\limits_{u \leq t} \frac{\mathrm{d} N_{\ell m}(u)}{Y_{\ell}(t)}$ non-parametrically estimates $A_{\ell m}(t) = \int_0^t \alpha_{\ell m}(u) \mathrm{d} u$
- Aalen-Johansen estimator $\widehat{P}_{\ell j}(s,t)$ generalizes the Kaplan-Meier estimator to multiple states and estimates the transition probability $P_{\ell j}(s,t) = \mathbb{P}(\text{state } j \text{ at time } t| \text{ state } \ell \text{ at time } s)$
- **Nota Bene:** One-to-one relation between hazards and probabilities (generally) **not** given anymore → all hazards have to be taken into account (Austin and Fine, 2017)

Multistate models allow for the formulation (and estimation) of alternative estimands:

- Previous slide: (Expected Excess) Hospital-free survival
- Eefting et al. (2016), Bluhmki et al. (2018): Relapse-free survival free of immunosuppressive therapy
- James et al. (2019): Graft-versus-host-disease- and relapse-free survival
- Holtan et al. (2019): Dynamic graft-versus-host disease-free, relapse-free survival ©

- Nelson-Aalen estimator $\widehat{A}_{\ell m}(t) = \sum\limits_{u \leq t} \frac{\mathrm{d} N_{\ell m}(u)}{Y_{\ell}(t)}$ non-parametrically estimates $A_{\ell m}(t) = \int_0^t \alpha_{\ell m}(u) \mathrm{d} u$
- Aalen-Johansen estimator $\widehat{P}_{\ell j}(s,t)$ generalizes the Kaplan-Meier estimator to multiple states and estimates the transition probability $P_{\ell j}(s,t) = \mathbb{P}(\text{state } j \text{ at time } t| \text{ state } \ell \text{ at time } s)$
- **Nota Bene:** One-to-one relation between hazards and probabilities (generally) **not** given anymore → all hazards have to be taken into account (Austin and Fine, 2017)

Multistate models allow for the formulation (and estimation) of alternative estimands:

- Previous slide: (Expected Excess) Hospital-free survival
- Eefting et al. (2016), Bluhmki et al. (2018): Relapse-free survival free of immunosuppressive therapy
- James et al. (2019): Graft-versus-host-disease- and relapse-free survival
- Holtan et al. (2019): Dynamic graft-versus-host disease-free, relapse-free survival ©

Next slides: How can such complex time-to-event data be simulated?

⇒ time-dependent covariate(s) + terminal event(s)

Received: 9 February 2018 Revise

Revised: 13 March 2019

Accepted: 3 April 2019

DOI: 10.1002/sim.8177

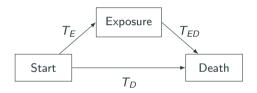
RESEARCH ARTICLE

Bootstrapping complex time-to-event data without individual patient data, with a view toward time-dependent exposures

Tobias Bluhmki¹ Hein Putter² | Arthur Allignol³ | Jan Beyersmann¹, on behalf of the COMBACTE-MAGNET consortium

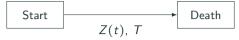
- Important for the development of novel estimation procedures, sample size calculations, etc.
- Simulation studies (often) aim to mimic real-world settings

Recent developments in simulation of time-to-event data with longitudinal covariate patterns (simple example)



Latent failure time approach I

Simulate T_D , T_E , and T_{ED} separately (possibly assuming some dependence structure, Fleischer et al., 2009)



Latent failure time approach II:

- Leemis et al. (1990); Shih and Leemis (1993); Austin (2012); Mi et al. (2016); Crowther and Lambert (2013), ...
- Exposure status $Z(t) = \mathbf{1}(t > T_E) \in \{0,1\} \Rightarrow$ time-dependent covariate
- Cox-type survival hazard $\tilde{\alpha}(t|\mathsf{Past}) = \mathbf{1}(t \leq T_E) \cdot \alpha_0(t) + \mathbf{1}(t > T_E) \cdot \alpha_0(t) \cdot \exp(\beta)$

Start
$$Z(t), T$$
 Death

Latent failure time approach II:

- Leemis et al. (1990); Shih and Leemis (1993); Austin (2012); Mi et al. (2016); Crowther and Lambert (2013), ...
- Exposure status $Z(t) = \mathbf{1}(t > T_E) \in \{0, 1\} \Rightarrow$ time-dependent covariate
- Cox-type survival hazard $\tilde{\alpha}(t|\mathsf{Past}) = \mathbf{1}(t \leq T_E) \cdot \alpha_0(t) + \mathbf{1}(t > T_E) \cdot \alpha_0(t) \cdot \exp(\beta)$
- Generate T_E a priori and the survival time T (by e.g., inversion method) from

$$\mathbb{P}\left(T > t \middle| T_E = t_E\right) = \begin{cases} \exp\left(-\int_0^{t_0} \alpha_0(u) du\right), & \text{if } t \leq t_E, \\ \exp\left(-\left(\int_0^{t_0} \alpha_0(u) du + \int_{t_0}^t \alpha_0(u) \cdot \exp(\beta) du\right)\right), & \text{if } t > t_E \end{cases}$$

Start
$$Z(t), T$$
 Death

Latent failure time approach II:

- Leemis et al. (1990); Shih and Leemis (1993); Austin (2012); Mi et al. (2016); Crowther and Lambert (2013), ...
- Exposure status $Z(t) = \mathbf{1}(t > T_E) \in \{0, 1\} \Rightarrow$ time-dependent covariate
- Cox-type survival hazard $\tilde{\alpha}(t|\mathsf{Past}) = \mathbf{1}(t \leq T_E) \cdot \alpha_0(t) + \mathbf{1}(t > T_E) \cdot \alpha_0(t) \cdot \exp(\beta)$
- Generate T_E a priori and the survival time T (by e.g., inversion method) from

$$\mathbb{P}\left(T > t \middle| T_E = t_E\right) = \begin{cases} \exp\left(-\int_0^{t_0} \alpha_0(u)du\right), & \text{if } t \leq t_E, \\ \exp\left(-\left(\int_0^{t_0} \alpha_0(u)du + \int_{t_0}^t \alpha_0(u) \cdot \exp(\beta)du\right)\right), & \text{if } t > t_E \end{cases}$$

• Conceptual challenge (not highlighted so far): Reasonable for exogenous exposures such as environmental factors, because the occurrence of a failure in [u, u + du) does not dependent on the future exposure status at a later time t (Kalbfleisch and Prentice, 2002)

11

Latent failure approach II

$$\mathbb{P}\left(T > t \middle| T_E = t_E\right) = \begin{cases} \exp\left(-\int\limits_0^{t_0} \alpha_0(u) du\right), & \text{if } t \leq t_E, \\ \exp\left(-\left(\int\limits_0^t \alpha_0(u) du + \int\limits_{t_0}^t \alpha_0(u) \cdot \exp(\beta) du\right)\right), & \text{if } t > t_E \end{cases}$$

Is not valid for endogenous exposures (e.g., progression, HFH), because existence is bounded to the individual's survival status: P(T ≥ t|Past) = 1, if Y(t-) exists!

Latent failure approach II

$$\mathbb{P}\left(T > t \middle| T_E = t_E\right) = \begin{cases} \exp\left(-\int\limits_0^{t_0} \alpha_0(u)du\right), & \text{if } t \leq t_E, \\ \exp\left(-\left(\int\limits_0^{t_0} \alpha_0(u)du + \int\limits_{t_0}^t \alpha_0(u) \cdot \exp(\beta)du\right)\right), & \text{if } t > t_E \end{cases}$$

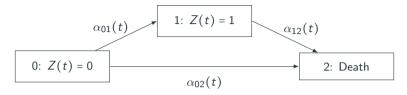
- Is not valid for endogenous exposures (e.g., progression, HFH), because existence is bounded to the
 individual's survival status: P(T ≥ t|Past) = 1, if Y(t-) exists!
- Violates the fundamental principle to not condition on the future (Breslow, 2014; Andersen and Keiding, 2012)
- Latent failure time approaches impose **impossible** sampling spaces in real life + latent failure time structure with **unclear** interpretation
 - each individual is supposed to be exposed at some time (possibly after death)
 - death may be observed **prior** to exposure
 - individual may die twice
- Note: Problem is not the Cox model

Latent failure approach II

$$\mathbb{P}(T > t | T_E = t_E) = \begin{cases} \exp\left(-\int_0^{t_0} \alpha_0(u) du\right), & \text{if } t \leq t_E, \\ \exp\left(-\left(\int_0^{t_0} \alpha_0(u) du + \int_{t_0}^t \alpha_0(u) \cdot \exp(\beta) du\right)\right), & \text{if } t > t_E \end{cases}$$

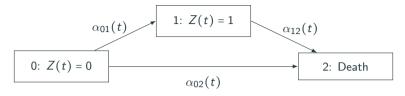
- Is not valid for endogenous exposures (e.g., progression, HFH), because existence is bounded to the
 individual's survival status: P(T ≥ t|Past) = 1, if Y(t-) exists!
- Violates the fundamental principle to **not condition on the future** (Breslow, 2014; Andersen and Keiding, 2012)
- Latent failure time approaches impose **impossible** sampling spaces in real life + latent failure time structure with **unclear** interpretation
 - each individual is supposed to be exposed at some time (possibly after death)
 - death may be observed **prior** to exposure
 - individual may die twice
- Note: Problem is **not** the Cox model
- Dito: multistate simulation approach used in e.g., Crowther and Lambert (2017) or James et al. (2019)

Hazard-based multistate algorithm going back to Gill and Johansen (1990)



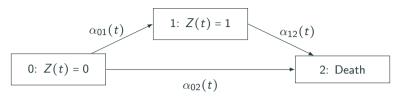
- Solution: Treat covariate levels as separate transient states in a multistate model
- Model **uniquely** identified through transition hazards

Hazard-based multistate algorithm going back to Gill and Johansen (1990)

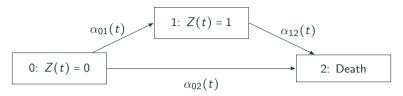


- Solution: Treat covariate levels as separate transient states in a multistate model
- Model uniquely identified through transition hazards
- Hazard-based simulation algorithm (Gill and Johansen, 1990)
 - 1. Generate waiting time in the current state
 - 2. Using step 1, generate the **event type**
 - 3. Repeat steps 1 & 2 until an absorbing state is reached \Rightarrow sequence of competing risks experiments

Hazard-based multistate algorithm going back to Gill and Johansen (1990)

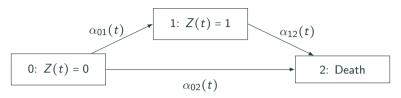


- Solution: Treat covariate levels as separate transient states in a multistate model
- Model uniquely identified through transition hazards
- Hazard-based simulation algorithm (Gill and Johansen, 1990)
 Generate waiting time in the current state
 - 2. Using step 1, generate the **event type**
 - 3. Repeat steps 1 & 2 until an absorbing state is reached ⇒ sequence of competing risks experiments
- Benefit: T_E has **not** to be generated a priori but is **part of the model** via α_{01} !
 - Natural interpretation: Real-world and no hypothetical times
 - ⇒ Occam's razor: 'More things should not be used than are necessary.'
 - Natural order of events and population-level quantities are guaranteed
 - Still allows for flexible parametrizations as in, e.g., Crowther and Lambert (2017)



Challenge to simulate 'biologically plausible' time-to-event data

- Adequately specify transition hazards $\alpha_{\ell m}(t)!$
- Cumulative hazards are estimated, e.g., via the non-parametric Nelson-Aalen estimator
- Requires (involved) pre-processing procedures (parametric assumptions, smoothing, etc.)



Challenge to simulate 'biologically plausible' time-to-event data

- Adequately specify transition hazards $\alpha_{\ell m}(t)!$
- Cumulative hazards are estimated, e.g., via the non-parametric Nelson-Aalen estimator
- Requires (involved) pre-processing procedures (parametric assumptions, smoothing, etc.)
- Convenient alternative: Empirical analogue of Gill and Johansen framework (Bluhmki et al., 2019)
 - Published information
 - In principle: No individual patient data needed!

Derive $\Delta \widehat{A}_{\ell m}$ from **published** information. Repeat the following steps, starting in state ℓ at time $t^* = 0$:

- 1. Compute (increment of) the all-cause hazard out of state ℓ given by $\Delta \widehat{A}_{\ell \bullet}(t) = \sum\limits_{m,m \neq \ell} \Delta \widehat{A}_{\ell m}(t)$.
- 2. If $\Delta \widehat{A}_{\ell \bullet}(t) \equiv 0 \ \forall t$, stop. Else, compute the **distribution function** of the transition time out of state ℓ

$$\widehat{F}_{\ell}(t) = 1 - \prod_{t^* < u \le t} \left(1 - \Delta \widehat{A}_{\ell \bullet}(u) du \right)$$

- 3. Event time $t > t^*$ is sampled from a multinomial distribution with probabilities $\Delta \widehat{F}_{\ell}(t)$ to each time t with $\Delta \widehat{F}_{\ell}(t) > 0 \Rightarrow t \in \{\text{original times}\}$
- 4. The new state m is sampled with probability $\Delta \widehat{A}_{\ell m}(t)/\Delta \widehat{A}_{\ell \bullet}(t), \ \ell \neq m$.
- 5. Update current time t^* and current state ℓ .

Derive $\Delta \widehat{A}_{\ell m}$ from **published** information. Repeat the following steps, starting in state ℓ at time $t^* = 0$:

- 1. Compute (increment of) the all-cause hazard out of state ℓ given by $\Delta \widehat{A}_{\ell \bullet}(t) = \sum_{m,m \neq \ell} \Delta \widehat{A}_{\ell m}(t)$.
- 2. If $\Delta \widehat{A}_{\ell \bullet}(t) \equiv 0 \ \forall t$, stop. Else, compute the **distribution function** of the transition time out of state ℓ

$$\widehat{F}_{\ell}(t) = 1 - \prod_{t^* < u \le t} \left(1 - \Delta \widehat{A}_{\ell \bullet}(u) du \right)$$

- 3. Event time $t > t^*$ is sampled from a multinomial distribution with probabilities $\Delta \widehat{F}_{\ell}(t)$ to each time t with $\Delta \widehat{F}_{\ell}(t) > 0 \Rightarrow t \in \{\text{original times}\}$
- 4. The new state m is sampled with probability $\Delta \widehat{A}_{\ell m}(t)/\Delta \widehat{A}_{\ell \bullet}(t), \ \ell \neq m$.
- 5. Update current time t^* and current state ℓ .

Remark

- \widehat{F}_{ℓ} degenerated in right-censored data \Rightarrow Put missing point mass to $2 \cdot t_{max}$ and individual is censored
- Empirical analogue of Gill and Johansen (1990) ⇒ Bootstrap/Resampling

Empirical simulation – Remarks

- Requires (at least) ...
 - 1. ... the (increments of the) Nelson-Aalen estimators
 - 2. ... the initial distribution
 - 3. ... information on right-censoring mechanism (Kaplan-Meier plot, risk sets, etc.)
- Ready-to-use: mssample in the R-package mstate
- Bluhmki et al. (2019):
 - Mimicking real-world time-to-event data without pre-processing procedures
 - ullet Novel **bootstrap** procedure in order to assess statistical uncertainty \Rightarrow beyond Efron's bootstrap

Empirical simulation – Remarks

- Requires (at least) ...
 - 1. ... the (increments of the) Nelson-Aalen estimators
 - 2. ... the initial distribution
 - 3. ... information on right-censoring mechanism (Kaplan-Meier plot, risk sets, etc.)
- Ready-to-use: mssample in the R-package mstate
- Bluhmki et al. (2019):
 - Mimicking real-world time-to-event data without pre-processing procedures
 - Novel bootstrap procedure in order to assess statistical uncertainty ⇒ beyond Efron's bootstrap
- Other field of applications (work in progress):
 - Can be used to overcome copyright restrictions in order to make patient data publicly available
 - Sample size calculations, when historical data should be incorporated

Discussion – Multistate perspective

- Multistate methodology allows for the estimation of alternative estimands
- Treatment effects may be evaluated by the application of the wild bootstrap (Bluhmki et al., 2018)

Discussion – Multistate perspective

- Multistate methodology allows for the estimation of alternative estimands
- Treatment effects may be evaluated by the application of the wild bootstrap (Bluhmki et al., 2018)
- Joint simulation of time-dependent exposures and complex time-to-event data
- Plausibility:
 - Natural interpretation (real-world, population level, etc.)
 - Parsimony in terms of Occam's razor
 - In-line with fundamental principles of time-to-event methodology and statistical analysis
 - Important for **study planning** (sample size calculations/trial protocol)

Discussion - Multistate perspective

- Multistate methodology allows for the estimation of alternative estimands
- Treatment effects may be evaluated by the application of the wild bootstrap (Bluhmki et al., 2018)
- Joint simulation of time-dependent exposures and complex time-to-event data
- Plausibility:
 - Natural interpretation (real-world, population level, etc.)
 - Parsimony in terms of Occam's razor
 - In-line with fundamental principles of time-to-event methodology and statistical analysis
 - Important for **study planning** (sample size calculations/trial protocol)
- Flexibility:
 - Qualitative and reversible exposures & more complex disease histories
 - ⇒ Continuous covariates need to be categorized into a finite number of categories
 - Independent right-censoring and left-truncation + degenerated initial distributions
 - Modeling assumptions: **Non-Markov** situations, Aalen's additive model, ...
 - Covers Poisson-Regression, AG model, and PWP model as special cases
- Note: Competing approaches lead on average to the same (and correct) data structure, but simulation
 designs have no real-world interpretation

References

- Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models based on Counting Processes, Springer Series in Statistics. Springer, New York, NY.
- Andersen, P. K. and Keiding, N. (2012). Interpretability and importance of functionals in competing risks and multistate models. Statistics in Medicine. 31(11-12):1074–1088.
- Austin, P. C. (2012). Generating survival times to simulate cox proportional hazards models with time-varying covariates. *Statistics in Medicine*, 31(29):3946–3958.
- Austin, P. C. and Fine, J. P. (2017). Practical recommendations for reporting fine-gray model analyses for competing risk data. *Statistics in Medicine*, 36(27):4391–4400.
- Bakal, J. A., McAlister, F. A., Liu, W., and Ezekowitz, J. A. (2014). Heart failure re-admission: measuring the ever shortening gap between repeat heart failure hospitalizations. *PloS One*, 9(9):e106494.
- Bluhmki, T., Putter, H., Allignol, A., and Beyersmann, J. (2019). Bootstrapping complex time-to-event data without individual patient data, with a view toward time-dependent exposures. *Statistics in Medicine*, 38(20):3747–3763.
- Bluhmki, T., Schmoor, C., Dobler, D., Pauly, M., Finke, J., Schumacher, M., and Beyersmann, J. (2018). A wild bootstrap approach for the aalen-johansen estimator. *Biometrics*, 74(3):977–985.
- Breslow, N. E. (2014). Lessons in biostatistics. In Lin, X., Genest, C., Banks, D. L., Molenberghs, G., Scott, D. W., and Wang, J.-L., editors, *Past, Present, and Future of Statistical Science*, pages 335–347. Chapman and Hall/CRC.
- Crowther, M. J. and Lambert, P. C. (2013). Simulating biologically plausible complex survival data. *Statistics in Medicine*, 32(23):4118–4134.
- Crowther, M. J. and Lambert, P. C. (2017). Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. *Statistics in Medicine*, 36(29):4719–4742.
- Eefting, M., de Wreede, L. C., Halkes, C. J., Peter, A., Kersting, S., Marijt, E. W., Veelken, H., Putter, H., Schetelig, J., and Falkenburg, J. F. (2016). Multi-state analysis illustrates treatment success after stem cell transplantation for acute myeloid leukemia followed by donor lymphocyte infusion. *Haematologica*, 101(4):506–514.
- Fleischer, F., Gaschler-Markefski, B., and Bluhmki, E. (2009). A statistical model for the dependence between progression-free survival and overall survival. *Statistics in Medicine*, 28(21):2669–2686.

Holtan, S. G., Zhang, L., DeFor, T. E., Bejanyan, N., Arora, M., Rashidi, A., Lazaryan, A., Kotiso, F., Blazar, B. R., Wagner, J. E., Brunstein, C. G., MacMillan, M. L., and Weisdorf, D. J. (2019). Dynamic graft-versus-host disease-free, relapse-free survival: Multistate modeling of the morbidity and mortality of allotransplantation. *Biology of Blood and Marrow Transplantation*, 25(9):1884

Gill, R. D. and Johansen, S. (1990). A survey of product-integration with a view toward application in survival analysis. The Annals of

Statistics, 18(4):1501-1555.

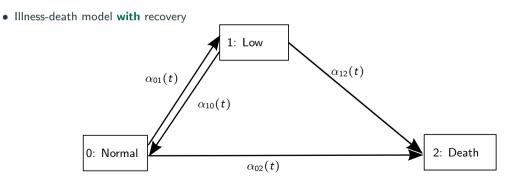
-1889.

- leva, F., Jackson, C. H., and Sharples, L. D. (2017). Multi-state modelling of repeated hospitalisation and death in patients with heart failure: the use of large administrative databases in clinical epidemiology. *Statistical Methods in Medical Research*, 26(3):1350–1372.
- James, D. A., Ng, J., Wei, J., and Vandemeulebroecke, M. (2019). Multistate modeling and simulation of patient trajectories after allogeneic hematopoietic stem cell transplantation to inform drug development. *Biometrical Journal*. (early view).
- Kalbfleisch, J. D. and Prentice, R. L. (2002). *The Statistical Analysis of Failure Time Data*. John Wiley & Sons, Hoboken, New Jersey, USA, 2nd edition.
- Leemis, L. M., Shih, L.-H., and Reynertson, K. (1990). Variate generation for accelerated life and proportional hazards models with time dependent covariates. Statistics & Probability Letters, 10(4):335 339.
- Mi, X., Hammill, B. G., Curtis, L. H., Lai, E. C.-C., and Setoguchi, S. (2016). Use of the landmark method to address immortal person-time bias in comparative effectiveness research: a simulation study. *Statistics in Medicine*, 35(26):4824–4836.
- Shih, L.-H. and Leemis, L. M. (1993). Variate generation for a nonhomogeneous poisson process with time dependent covariates. *Journal of Statistical Computation and Simulation*, 44(3-4):165–186.

Backup

Simulation Study

- Published CSL 1 trial (Example 1.3.12 in Andersen et al., 1993)
- 251 hormone-treated liver cirrhosis patients
- Study aim: Effect of prothrombin index (low vs. normal) on overall survival

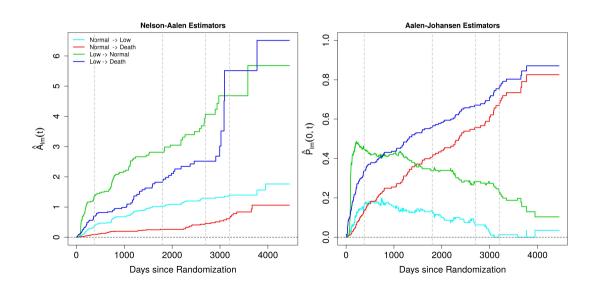


Simulation Study

- Published CSL 1 trial (Example 1.3.12 in Andersen et al., 1993)
- 251 hormone-treated liver cirrhosis patients
- Study aim: Effect of prothrombin index (low vs. normal) on overall survival
- Illness-death model with recovery
- Initial distribution: 43% normal and 57% abnormal indices at randomization
- Random right-censoring according to the censoring Kaplan-Meier estimator
- Aim: Recover the (study-based) Aalen-Johansen estimator of the matrix of transition probabilities

$$\widehat{\mathbf{P}}(0,t) = \left(\widehat{\mathbf{P}}_{\ell m}(0,t)\right)_{\ell,m} = \left(\widehat{\mathbb{P}}(X_t = m|X_0 = \ell)\right)_{\ell,m} = \prod_{u \in I} \left(\mathbf{I} + \Delta \widehat{\mathbf{A}}(u)\right)$$

- Sample sizes $n \in \{50, 100, 251, 1000\}$, $t \in \{378, 1800, 2700, 3200\}$, 2000 datasets for each study
- For each dataset and transition: Check whether the 95% log-log CI for $\widehat{\mathsf{P}}_{\ell m}^*(0,t)$ covers $\widehat{\mathsf{P}}_{\ell m}(0,t)$



		Coverage Probability (%)			
n	t	$\widehat{P}_{01}(0,t)$	$\widehat{P}_{02}(0,t)$	$\widehat{P}_{10}(0,t)$	$\widehat{P}_{12}(0,t)$
	378	94.9	92.5	93.8	94.0
50	1800	92.6	92.6	93.6	92.8
	2700	71.5	90.7	92.7	91.5
	3200	14.8	90.0	92.0	90.5
	378	94.6	94.8	95.1	94.3
100	1800	93.3	94.2	93.7	93.0
	2700	87.6	94.2	94.3	93.8
	3200	28.5	93.0	94.0	93.1
	378	95.3	95.2	94.7	95.0
251	1800	94.0	94.4	94.6	94.2
	2700	92.5	94.4	94.3	94.6
	3200	59.0	93.3	94.9	93.4
	378	95.2	94.6	94.5	94.7
1000	1800	95.5	94.9	94.5	93.9
	2700	94.2	94.2	95.2	95.2
	3200	94.1	94.4	94.7	94.6

		Coverage Probability (%)			
n	t	$\widehat{P}_{01}(0,t)$	$\widehat{P}_{02}(0,t)$	$\widehat{P}_{10}(0,t)$	$\widehat{P}_{12}(0,t)$
	378	94.9	92.5	93.8	94.0
50	1800	92.6	92.6	93.6	92.8
	2700	71.5	90.7	92.7	91.5
	3200	14.8	90.0	92.0	90.5
	378	94.6	94.8	95.1	94.3
100	1800	93.3	94.2	93.7	93.0
	2700	87.6	94.2	94.3	93.8
	3200	28.5	93.0	94.0	93.1
	378	95.3	95.2	94.7	95.0
251	1800	94.0	94.4	94.6	94.2
	2700	92.5	94.4	94.3	94.6
	3200	59.0	93.3	94.9	93.4
	378	95.2	94.6	94.5	94.7
1000	1800	95.5	94.9	94.5	93.9
	2700	94.2	94.2	95.2	95.2
	3200	94.1	94.4	94.7	94.6

		Coverage Probability (%)			
n	t	$\widehat{P}_{01}(0,t)$	$\widehat{P}_{02}(0,t)$	$\widehat{P}_{10}(0,t)$	$\widehat{P}_{12}(0,t)$
	378	94.9	92.5	93.8	94.0
50	1800	92.6	92.6	93.6	92.8
	2700	71.5	90.7	92.7	91.5
	3200	14.8	90.0	92.0	90.5
	378	94.6	94.8	95.1	94.3
100	1800	93.3	94.2	93.7	93.0
	2700	87.6	94.2	94.3	93.8
	3200	28.5	93.0	94.0	93.1
	378	95.3	95.2	94.7	95.0
251	1800	94.0	94.4	94.6	94.2
	2700	92.5	94.4	94.3	94.6
	3200	59.0	93.3	94.9	93.4
	378	95.2	94.6	94.5	94.7
1000	1800	95.5	94.9	94.5	93.9
	2700	94.2	94.2	95.2	95.2
	3200	94.1	94.4	94.7	94.6

		Coverage Probability (%)			
n	t	$\widehat{P}_{01}(0,t)$	$\widehat{P}_{02}(0,t)$	$\widehat{P}_{10}(0,t)$	$\widehat{P}_{12}(0,t)$
	378	94.9	92.5	93.8	94.0
50	1800	92.6	92.6	93.6	92.8
	2700	71.5	90.7	92.7	91.5
	3200	14.8	90.0	92.0	90.5
	378	94.6	94.8	95.1	94.3
100	1800	93.3	94.2	93.7	93.0
	2700	87.6	94.2	94.3	93.8
	3200	28.5	93.0	94.0	93.1
	378	95.3	95.2	94.7	95.0
251	1800	94.0	94.4	94.6	94.2
	2700	92.5	94.4	94.3	94.6
	3200	59.0	93.3	94.9	93.4
	378	95.2	94.6	94.5	94.7
1000	1800	95.5	94.9	94.5	93.9
	2700	94.2	94.2	95.2	95.2
	3200	94.1	94.4	94.7	94.6

Proper Survival Hazard

$$\begin{split} \alpha(t)dt &= \mathbb{P}\left(T \in dt \middle| T \geq t\right) = \frac{\mathbb{P}\left(T \in dt, Z(t) = 0\right) + \mathbb{P}\left(T \in dt, Z(t) = 1\right)}{\mathbb{P}\left(T \geq t\right)} \\ &= \frac{\mathbb{P}\left(T \in dt \middle| Z(t) = 0, T \geq t\right) \cdot \mathbb{P}\left(Z(t) = 0, T \geq t\right) + \mathbb{P}\left(T \in dt \middle| Z(t) = 1, T \geq t\right) \cdot \mathbb{P}\left(Z(t) = 1, T \geq t\right)}{\mathbb{P}\left(T \geq t\right)} \\ &= \frac{\mathbb{P}\left(Z(t) = 0, T \geq t\right)}{\mathbb{P}\left(T \geq t\right)} \cdot \underbrace{\mathbb{P}\left(T \in dt \middle| Z(t) = 0, T \geq t\right)}_{=:\alpha_{02}(t)dt} + \underbrace{\frac{\mathbb{P}\left(Z(t) = 0, T \geq t\right)}{\mathbb{P}\left(T \geq t\right)}}_{=:\alpha_{12}(t)dt} \cdot \underbrace{\mathbb{P}\left(T \in dt \middle| Z(t) = 1, T \geq t\right)}_{=:\alpha_{12}(t)dt}. \end{split}$$

Note that if Z(t) is external, $\alpha(t)$ equals the expectation of the right-hand side for $\alpha_{02}(t) = \alpha_0(t)$ and $\alpha_{12}(t) = \alpha_0(t) \cdot \exp(\beta)$,

Proof equal data structure

Let $T_0 > 0$ be the random time to exposure with abs. cont. $F_{T_0}(t)$ and density function $f_{T_0}(t)$

$$\Rightarrow \alpha_{01}(t) \coloneqq \frac{f_{T_0}(t)}{1 - F_{T_0}(t)}.$$

Let T be the time to death with the underlying survival hazard using the Cox specification. Using standard calculations, the probability to be alive and unexposed corresponding to an a priori generation of the exposure time can be expressed as

$$\mathbb{P}(t < T, t < T_0) = \int_0^\infty \mathbb{P}(t < T, t < s | T_0 = s) dP^{T_0}(s) = \int_t^\infty \mathbb{P}(T > t | T_0 = s) f_{T_0}(s) ds \stackrel{s > t}{=} \int_t^\infty \exp(-A_{02}(t)) f_{T_0}(s) ds$$

$$= \exp(-A_{02}(t)) \cdot \underbrace{(1 - F_{T_0}(t))}_{\mathbb{P}(T_0 > t)} = \exp(-A_{02}(t) - A_{01}(t)),$$

where
$$A_{01}(t) = \int_{0}^{t} \alpha_{01}(u) du$$

 \Rightarrow equivalent to the usual state occupation probability $\mathbb{P}(X(t)=0)$ derived from the illness-death model with recovery with exposure hazard $\alpha_{01}(t)$, because we have $\mathbb{P}(X_0=0)=1$ Similar arguments for $\mathbb{P}(T_0 < t < T)$

Performance of bootstrapped CIs for state occupation probabilities (excerpt)

- Parametric hazards: $\alpha_{01}(t) \equiv 0.0005$, $\alpha_{02}(t) \equiv 0.0002$ $\alpha_{10}(t) \equiv 0.002$, $\alpha_{12}(t) \equiv 0.0012$
- Initial distribution: $\pi_0 = 0.43$, $\pi_1 = 0.57$
- Sample sizes: $n \in \{50, 100, 251, 500\}$
- 'True' benchmarks: $P(X_t = \ell)$, $\ell \in \{0, 1, 2\}$, t = 378, 500, 1000, 2700, 3200.
- 1000 studies for each sample sizes via non-empirical simulation algorithm, within each study 1000 iterations using empirical algorithm
- 95% bootstrap CIs for the state occupation probabilities are set to the corresponding 2.5% and 97.5 quantile of the 1000 bootstrapped quantities

Performance of bootstrapped CIs for state occupation probabilities (excerpt)

		Coverage Probability (%)			
n	t	$P(X_t = 0)$	$P(X_t = 1)$	$P(X_t = 2)$	
	378	97.4	95.1	94.0	
	500	97.4	94.5	94.9	
50	1000	95.5	93.1	94.8	
	2700	90.3	66.8	90.9	
	3200	89.1	68.7	91.2	
	378	97.2	94.7	94.2	
	500	96.5	94.3	94.9	
100	1000	94.1	94.3	94.6	
	2700	92.1	87.2	92.8	
	3200	90.3	74.8	91.9	
	378	97.3	94.9	94.4	
	500	95.4	94.5	95.9	
251	1000	96.7	95.0	96.4	
	2700	92.8	89.8	94.0	
	3200	92.3	87.6	93.2	
	378	96.8	95.3	96.4	
	500	96.7	95.0	95.6	
500	1000	94.9	95.7	95.0	
	2700	92.1	91.4	93.3	
	3200	91.8	89.4	91.6	

Other recurrent event techniques

Negative Binomial: Fully parametric

- $\alpha_{01}(t; \mathbf{v}, Z) = \alpha_{02}(t; \mathbf{v}, Z) \dots \equiv \mathbf{v} \cdot \alpha_{01} \cdot \exp(\beta Z)$, where $\mathbf{v} \sim \Gamma\left(\frac{1}{\theta}, \frac{1}{\theta}\right)$ is an (unobserved) random effect (frailty term)
- Markov assumption violated
- ullet Dependence between recurrent events captured by v

Joint Frailty Model: Semi- or fully parametric

$$\begin{cases} \alpha_{(k-1)k}(t; \mathbf{v}, Z) = \mathbf{v} \cdot \alpha_0(t) \cdot \exp(\beta Z) & \text{(recurrent events)} \\ \alpha_{kD}(t; \mathbf{v}, Z) = \mathbf{v}^{\kappa} \cdot \alpha_{D;0}(t) \cdot \exp(\tilde{\beta} Z) & \text{(death)}, \end{cases}$$

where $v \sim \Gamma\left(\frac{1}{\theta}, \frac{1}{\theta}\right)$ is an (unobserved) random effect (frailty term)

- Markov assumption violated
- ullet Dependence between recurrent events captured by v
- ullet Frailty acts differently on the two hazards via $\kappa > 0$