

Adaptive signature designs for cancer vaccines

<u>Andrea Callegaro</u> -GSK Vaccines, Belgium

PSI Conference 02 – 05 Jun, 2019





• I am an employee of, and hold shares in, the GSK group of companies





- Background of MAGE-A3 predictive gene signature and Adaptive Signature Design in Phase III studies
- 2. Statistical aspects to build the gene-signature
  - 1. Survival Models
  - 2. High-dimensional data
  - 3. Parametrization of the gene-treatment interaction
  - 4. method to find the cut-off
- 3. Gene-signature results in DERMA Phase III training set
- 4. Adaptive Signature Design with futility
- 5. Conclusions



MAGE-A3 cancer immunotherapy Introduction and background

# **Antigen-Specific Cancer Immunotherapy**





Specific Tumor cell specific\*

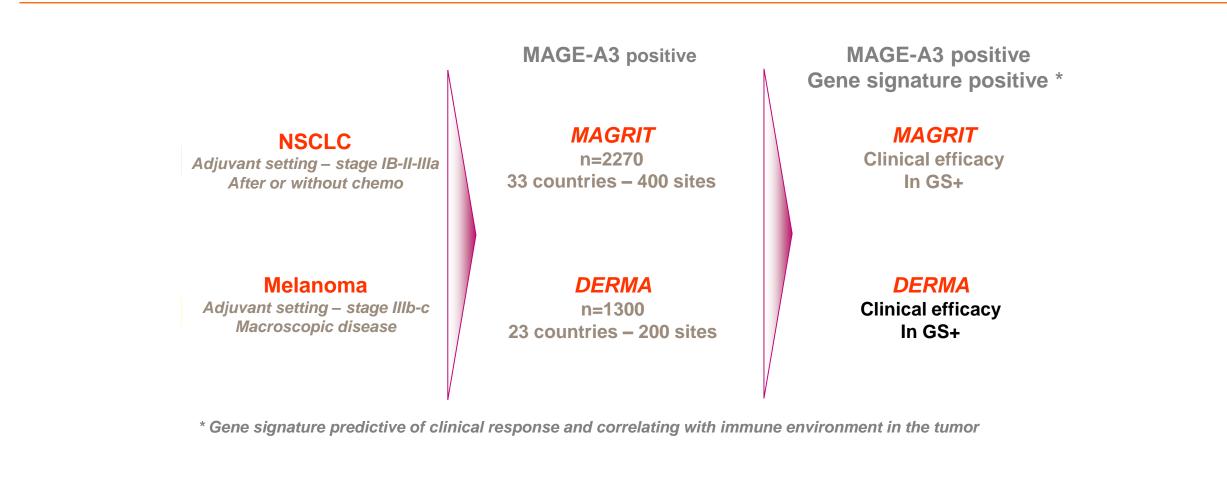
Cancer

Prevention of relapseMinimal residual disease

Immunotherapy Educate the patient's immune system to fight cancerNovel approach involving all immune anti-cancer cells

### Implementation of predictive biomarkers in Phase III clinical studies

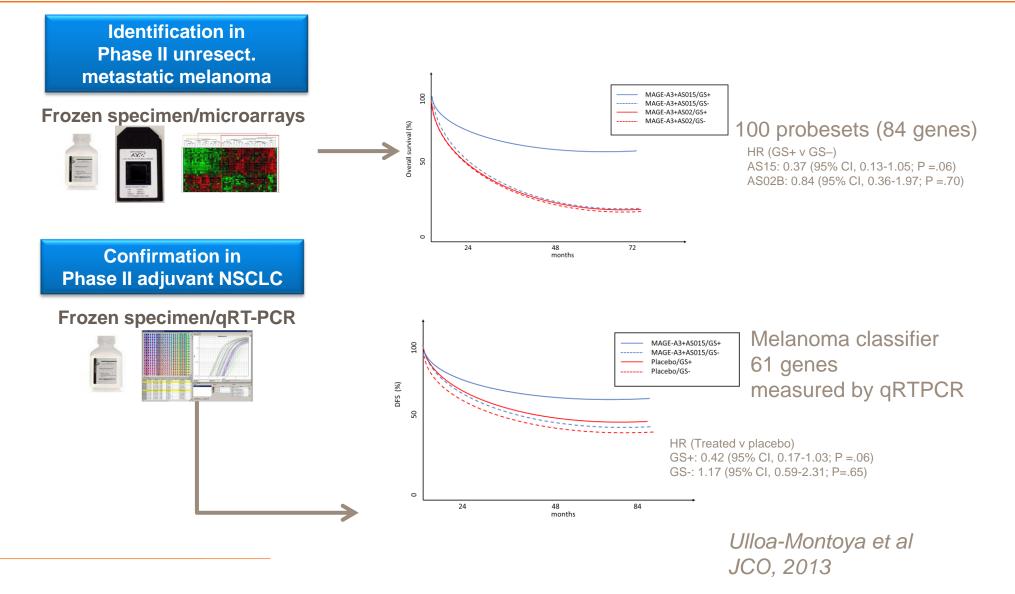




# Biomarkers for Selection of Patients More Likely to Benefit from MAGE-A3 Immunotherapy:

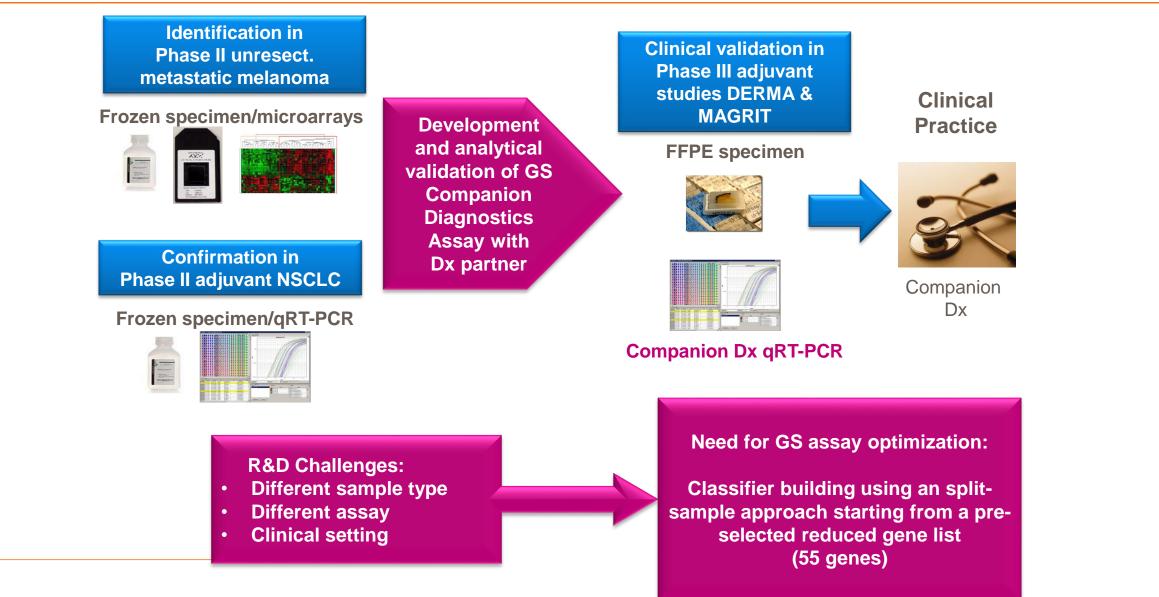


# **From Translational Research to Clinical Practice**



# Biomarkers for Selection of Patients More Likely to Benefit from MAGE-A3 Immunotherapy:

# **From Translational Research to Clinical Practice**



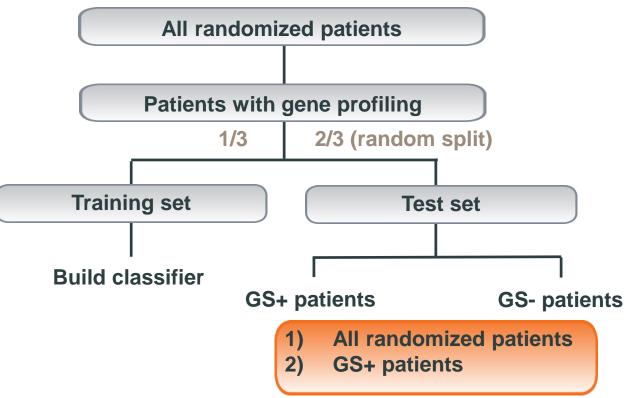


# **Adaptive Signature Design**



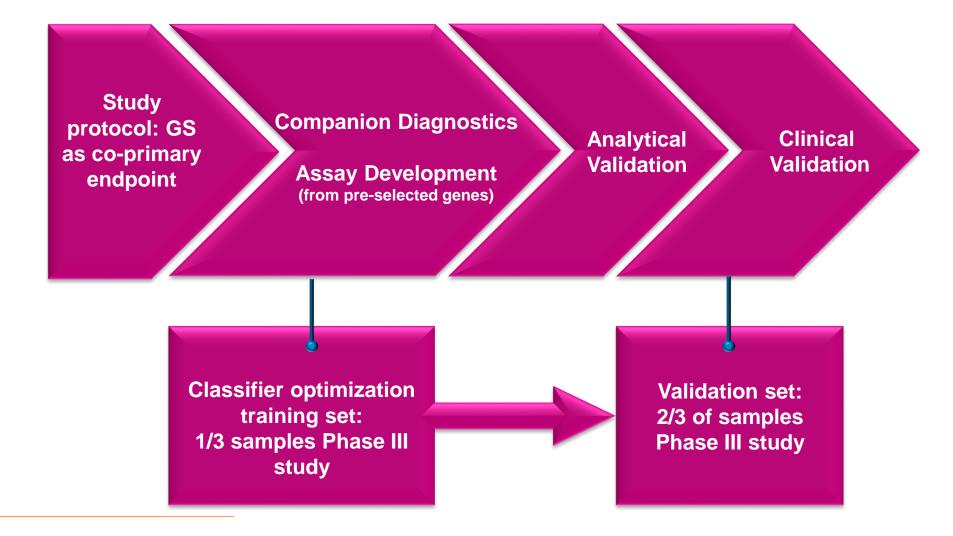
Prospective clinical validation of gene signature

- Freidlin and Simon: Adaptive Signature Design
- Change in sample type and methodology



Freidlin and Simon (2005) Clin Cancer Res; **11**, 7872-7878 Split-Sample Approach: Assay Optimization and Clinical Validation of the GS Biomarkers in the Ongoing Phase III MAGE-A3 Immunotherapy Studies







#### How to build the gene-signature

Supplementary appendix of Dreno, B et al. (2018). Clin Cancer Res; 11: 7872–7878. Li, J et al. (2016). Biometrics, 72(3), 877-887.



- **Problem definition**: Identifying the target population (subgroups of treatment responders) in presence of high dimensional data and survival outcome in randomized clinical trial
- Limited literature available on methodologies for this specific problem
- 2-year collaboration with different academic partners:
  - -Leiden University: Prof. Hans van Houwelingen and Prof. Jelle Goeman (independent GS body)
  - -Harvard School of Publich Health: Prof. LJ Wei and Prof. Tianxi Cai





Y (DFS Status, DFS Time)~ n\*2 matrix of *clinical response* 

- **G~** *treatment* (1=treated, 0=untreated)
- X~ n\*p matrix of gene-expression (main effect)
- GX~ n\*p matrix of gene-treatment interaction
- Z~ n\*q matrix of *clinical covariates*

On DERMA training-set: n=357; p=55 and q=11.

# **GS classifier: the score and the cutoff**

Li, J et al. 2016. Biometrics, 72(3), 877-887.



- To build a classifier we need two main ingredients: a score and a cut-off value.
- The **score** is a continuous function of X which estimate for each patient the treatment effect (high values of the score means high probability to be GS+)

 $E(Y) = \beta_0 + X\beta_X + G\beta_G + GX\beta_{G*X}$ 

$$score(X,\hat{\beta}) = E(Y|G=1) - E(Y|G=0) = \hat{\beta}_G + X\hat{\beta}_{G*X}$$

• a **cutoff value** to transform the score in a binary variable (GS+, GS-). The cut-off is chosen to maximize the power in the test set



- The Cox model is the standard regression model for survival data.
- Logistic regression: probability of the events before time  $t_0$  (weighted by the inverse of the probability to be censored).
- **PROS**: The logistic model is **more robust**. It means that the model is working even when the assumptions of the model are violated.
- CONS
  - -results of the logistic model depends on  $t_0$
  - -the time to event is only partially used, so there is a potential loss of information respect to the Cox model.
  - -observations censored before  $t_0$  are discarded (potential loss of information)



- **Principal components:** Fit a regression model using the first  $\lambda$  principal components.
- PLS (Partial Least Square): Use only the first λ factors (called PLS) explaining the covariance between [X,GX] and Y.
- Ridge Regression: fit a model with all the genes (main effects and interactions) and penalized [partial] likelihood (Houwelingen, 1993)
- Random forest: average of many decision trees (with gene-treatment interactions).

# **Parametrization of the interaction**



Different parametrizations lead to different results

Classical parametrization

$$h(t) = h_0(t) \exp(G\beta_G + X\beta_{X,\lambda} + GX\beta_{GX,\lambda})$$

The problem is that X is more "important" than GX, because X has higher variance.

**PG2**: prognostic effect in treated and controls.

$$h(t) = h_0(t) \exp(G\beta_G + GX\beta_{GX,\lambda} + (1 - G)X\beta_{(1 - G)X,\lambda})$$

• Two models: one in treated and one in controls one for each model

 $h(t|G = 1) = h_{01}(t) \exp(X\beta_{X,\lambda_1}); \ h(t|G = 0) = h_{00}(t) \exp(X\beta_{X,\lambda_0})$ 

this parametrization has two lambdas  $(\lambda_1, \lambda_0)$ .



# **Results: DERMA GS**

Supplementary appendix of Dreno et al, Lancet Oncol.2018;19(7):916-929

# **Training set (N=366 patients)**

Dreno et al, Lancet Oncol.2018;19(7):916-929







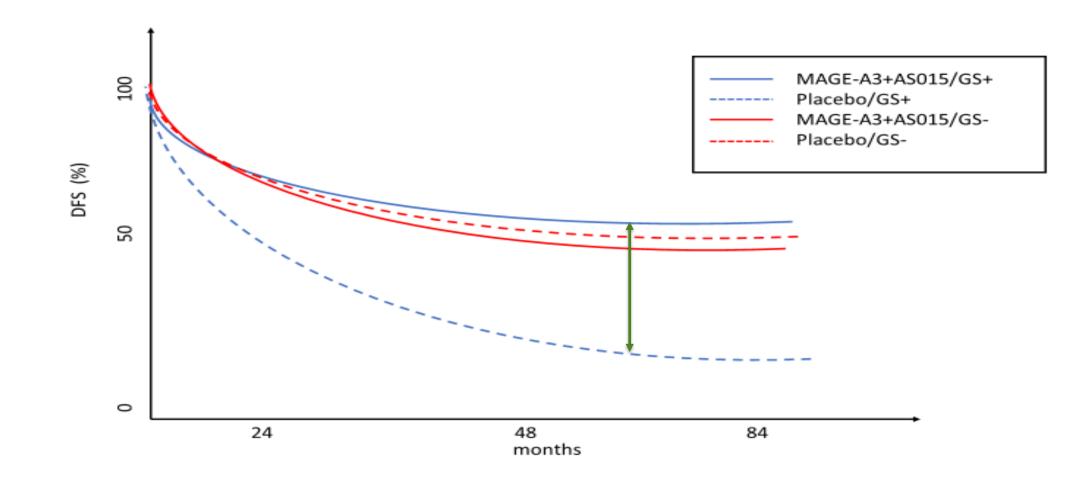
• Different approaches (models, dimension reduction, parametrizations, tuning parameter estimation) were evaluated on simulated data and on the training-set

- **Model selected**: based on results and theoretical considerations we selected the *Ridge Cox model* with *PG2 parametrization* of the interaction and tuning parameter estimated by the *LOO cross-validated partial-likelihood*.
- Cut-off selected: the approach of Li et al. (2016) selected 40% of GS+ patients

# Training set by vaccination and GS

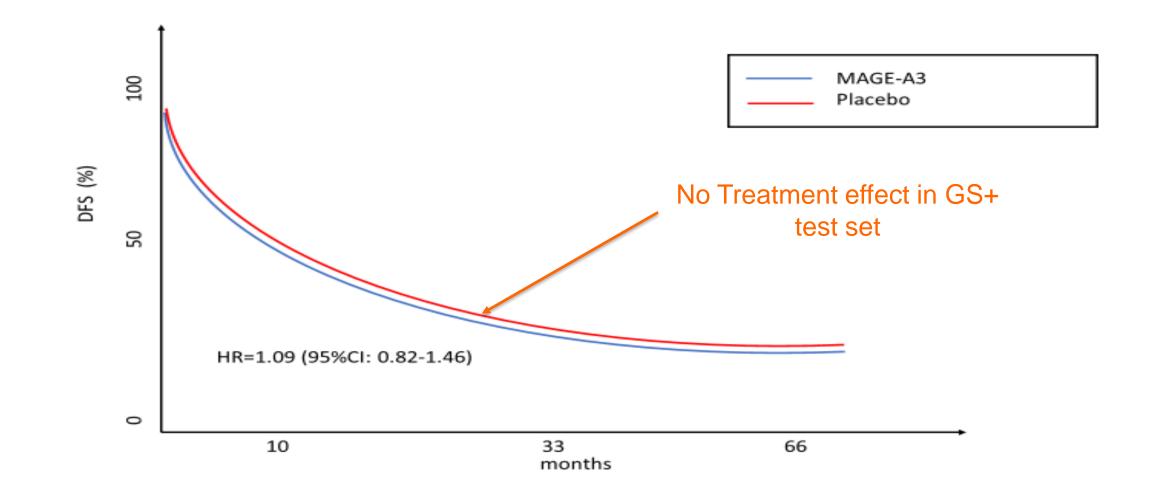
Dreno et al, Lancet Oncol.2018;19(7):916-929





#### Test-set GS+ Dreno et al, Lancet Oncol.2018;19(7):916-929







# Adaptive signature design with futility

Callegaro, Stat Methods Med Res. 2019 Mar;28(3):953-961



Callegaro, Stat Methods Med Res. 2019 Mar;28(3):953-961

Adaptive signature trials are *expensive* (measurement and validation of highdimensional/multivariate biomarkers)

**Futility**: collect all the samples at baseline, but measure/validate the biomarker only if the overall treatment effect is not significant and "large enough"

- If  $pv_1 \le \alpha_1$  significant overall: biomarker not needed ( $H_{012}$  rejected)
- If  $pv_1 > \alpha_1^*$  overall too small: biomarker not needed
- If  $\alpha_1 < pv_1 \le \alpha_1^*$  measure/validate the biomarker - if  $pv_2 \le \alpha_2$  significant GS+ ( $H_{012}$  rejected)



The overall treatment effect is

$$E(U_1) = E(\bar{y}_A - \bar{y}_B) = \pi \Delta_R + (1 - \pi) \Delta_{NR}$$

where  $\pi$  is the proportion of Responders and  $\Delta_{NR} = \beta \Delta_R$  is the treatment effect in non-responders.

So the treatment effect in GS+ subgroup is

$$E(U_2) = \Delta_R[PPV + (1 - PPV)\beta]$$

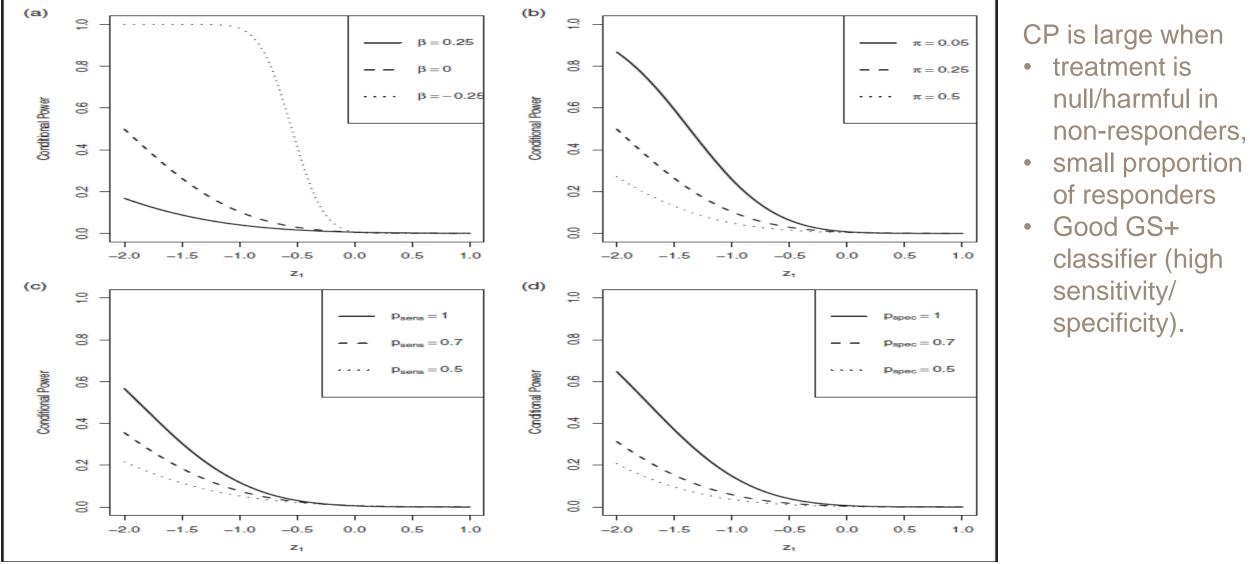
where the Positive Predictive Value (PPV) is

$$PPV = \frac{\pi p_{sens}}{p_+}$$

where  $p_+$  is the proportion of subjects in the GS+ and  $p_{sens}$  is the sensitivity of the GS classifier to identify responders.

### Conditional Power (CP) of GS+ given the overall (z1)







Biomarker measured/validated only if  $\alpha_1 < pv_1 \leq \alpha_1^*$ 

$$\gamma = 0.2, \ \alpha = 0.025, \ \alpha_1 = 0.02, \ p_{test} = 0.5, \ p_{spec} = 0.9 \quad \beta = 0$$

Assumption: no treatment effect in nonresponders

| π    | Psens | <b>Þ</b> + | $\alpha_2^{SD}$ | $\alpha_1^*(CP(\hat{\theta}))$ |
|------|-------|------------|-----------------|--------------------------------|
| 0.05 | 1.0   | 0.145      | 0.006           | 0.176                          |
| 0.05 | 0.7   | 0.130      | 0.005           | 0.104                          |
| 0.05 | 0.5   | 0.120      | 0.005           | 0.045                          |
| 0.25 | 1.0   | 0.325      | 0.006           | 0.080                          |
| 0.25 | 0.7   | 0.250      | 0.006           | 0.040                          |
| 0.25 | 0.5   | 0.200      | 0.006           | 0.014                          |
| 0.50 | 1.0   | 0.550      | 0.007           | 0.033                          |
| 0.50 | 0.7   | 0.400      | 0.006           | 0.013                          |
| 0.50 | 0.5   | 0.300      | 0.006           | 0.003                          |

No need to measure the
biomarker if overall pvalue>0.2 (futility based on overall results).

Adaptive signature not useful when proportion of responders is large and/or when the quality (sens./spec.) of the GS classifier is low.



- If  $\alpha_1 < pv_1 \le \alpha_1^*$  measure the biomarker in the training-set
- validate/measure the biomarker in test-set only if biomarker results are promising
- Futility can be based on
  - Conditional Power (DERMA)
  - interaction between the high-dimensional biomarker and the treatment (Callegaro et al, Biom. Journal 2017 59(4), 672-684.).
    - not necessary to build the GS classifier

# Conclusions



#### We showed

## a real implementation of Adaptive Signature Design (ASD)

- multivariate qRT-PCR (55 genes selected in Phase II).
- -GS not working on the test set
  - no treatment effect: positive in training-set and negative in test-set

### statistical challenges to build the GS

high-dimensional data; parametrization of the interaction; estimation of the tuning parameter; cut-off determination...

# ASD with futility based on

- overall results
- training-set biomarker results



## ASD is useful when

- i) proportion of responders is small (but not too small)
- ii) good GS classifier (high sensitivity and specificity)

More chance to have a good GS classifier if the biomarker is

- "validated" (good control of non-biological variability)
- biologically-informed
  - biomarker research/exploration in early-phase trials
  - good data vs big data
  - expertise vs black box

# **Main References**



- Callegaro, A (2019). Futility for subgroup analyses in the adaptive signature design. *SMMR* ;28(3):953-961.
- Callegaro, A et al. (2017). Testing interaction between treatment and high-dimensional covariates in randomized clinical trials. *Biometrical Journal*, 59(4), 672-684.
- Dreno, B et al. (2018). MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. *The Lancet Oncology*, 19(7), 916-929.
- Freidlin B and Simon R (2005). Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. *Clin Cancer Res*; 11: 7872–7878.
- Li, J et al. (2016). A predictive enrichment procedure to identify potential responders to a new therapy for randomized, comparative controlled clinical studies. *Biometrics*, 72(3), 877-887.
- Ulloa-Montoya, F et al. (2013). Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. *J Clin Oncol*, 31(19), 2388-2395.



# Thank you