

Pharmacometric Modelling to Support Extrapolation in Regulatory Submissions

Kristin Karlsson, PhD
Pharmacometric/Pharmacokinetic assessor
Medical Products Agency, Uppsala ,Sweden
PSI One Day Extrapolation Workshop

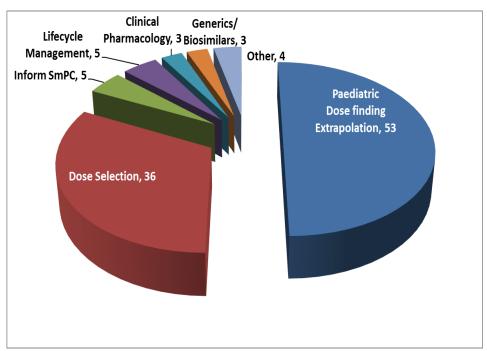
Disclaimer

The views expressed in this presentation are those of the speaker, and are not necessarily those of MPA or EMA.

Outline

- Introduction to pharmacometrics and extrapolation
- Why population analysis
- What are population models used for in support for extrapolation from adults to children
- Design and modelling considerations
- How to assess exposure similarity between adults and children
- Conclusion

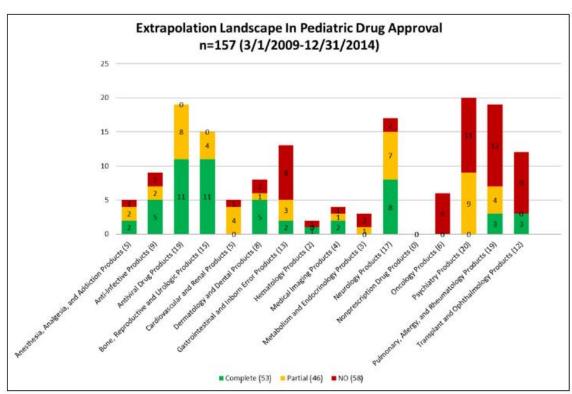
Pharmacometrics


"the science of developing and applying mathematical and statistical models to characterize, understand and predict a drug's pharmacokinetics, pharmacodynamics and biomarker-outcome behavior, data visualization, statistics, stochastic simulations and computer programming" [1]

- Pharmacokinetics "what the body does to the drug"
- Pharmacodynamics (=Response) "what the drug does to the body"
- Biomarker-outcome behavior disease progression, relationship between biomarkers and clinical endpoints etc.

EMA Modelling and Simulation Working Group 2016 Activity Report

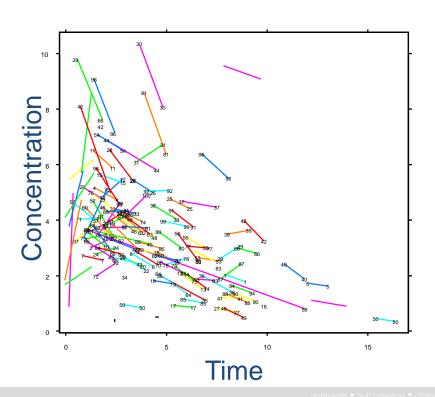
- 105 product related procedures
 - 41 from Paediatric committee,
 - 62 from Scientific advise working party,
 - 2 from CHMP
 - 7 Guidelines
- A breakdown of the scope of questions addressed by M&S is shown in the pie chart

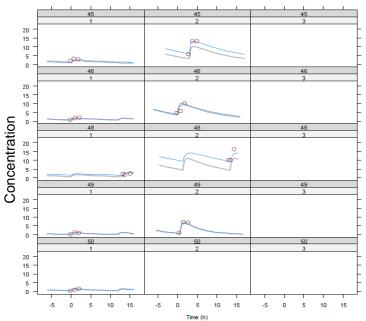

FDA publication 2017

Extrapolation of Efficacy in Pediatric Drug Development and Evidence-based Medicine: Progress and Lessons Learned. Sun *et al.* Therapeutic Innovation and Regulatory Science, 2017

2009-2014 1998-2009

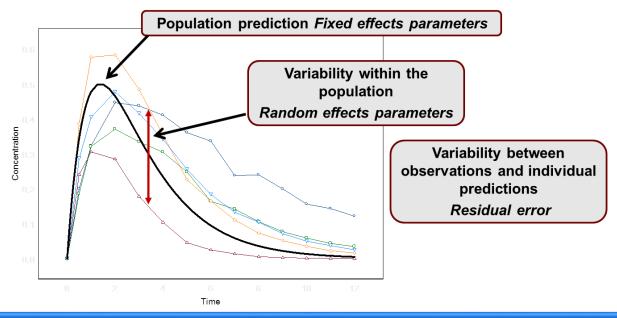
Table 1. Overview of Extrapolation Assessment Changes.


Extrapolation Category	Current Data Numbers of Products (%)	Dunne's Reference Numbers of Products (%)	
Complete	53 (34)	24 (14)	
Partial	46 (29)	113 (68)	
No	58 (37)	29 (18)	



monisation
• narcotics

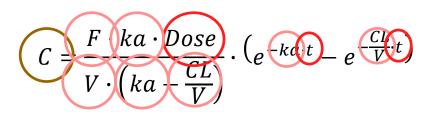
Sparse data

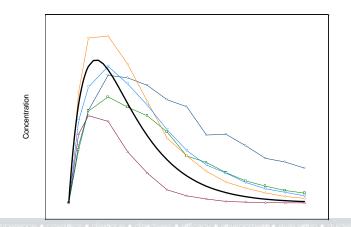


Blue lines: individual predictions, red circles: observations, gray lines: population predictions. Dark gray panel headers indicate individuals, light gray panel headers PK assessment days.

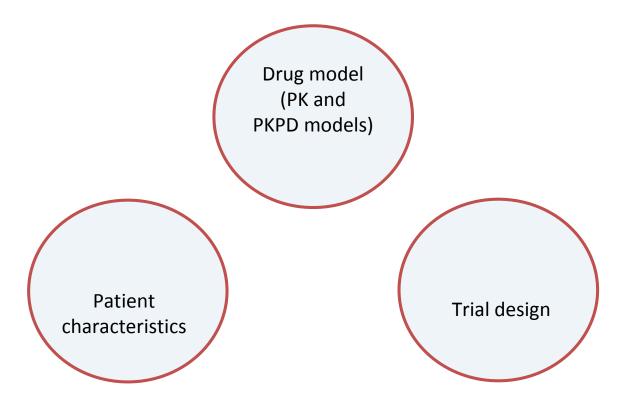
Population modelling view (Nonlinear Mixed Effects Modelling)

Fit one model to the data from all individuals while retaining the notion of individuals


PK model equations

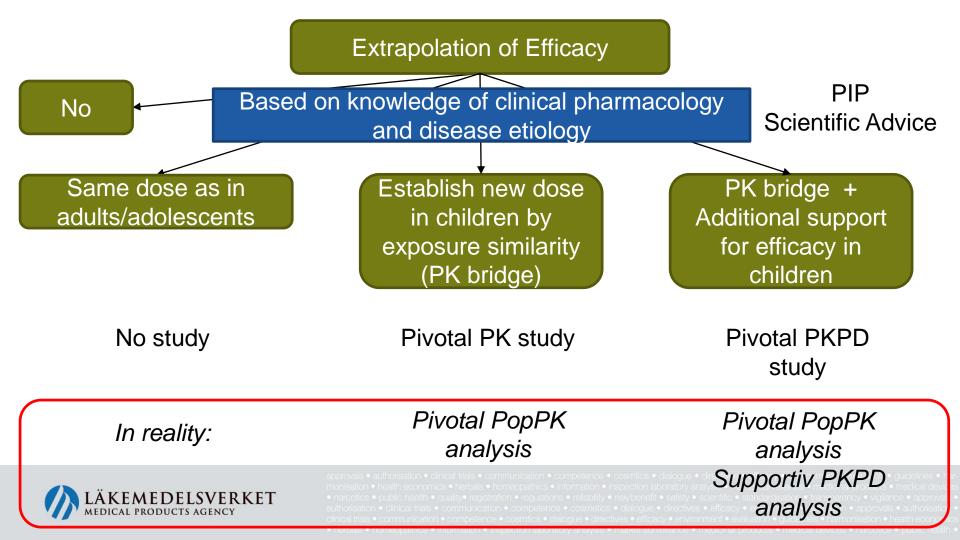

General structure of a mixed-effects model:

$$y_{ij} = f(X_{ij})P_i + \varepsilon_{ij}, \ \varepsilon_{ij} \sim N(0, \sigma^2)$$


Individual parameter P_i:

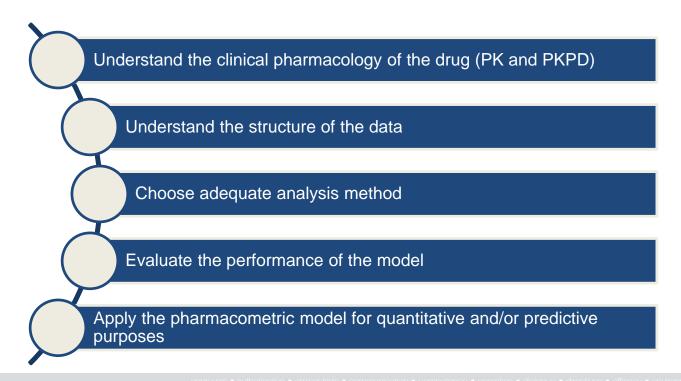
$$P_i = \theta \cdot e^{\eta_i}, \qquad \eta_i \sim N(0, \omega^2)$$

Pharmacometric non-linear mixed effects models



Nonlinear mixed-effect modelling software

- NONMEM
- ...
- Phoenix
- Monolix
- S-ADAPT
- SAS (PROC NLMIXED)
- R (LME)



What are pharmacometric models used for in support for extrapolation from adults to children

- PK model in adults
 - Reliable description of PK based on patients and/or HV
- Exposure-response (PKPD) model(s) in adults
- PK model in children
 - Pivotal to establish dosing recommendations in children
 - Often pooled analysis with adult or adolescent data
- Exposure-response model in children
 - Often based on effect data collected in PK study
 - Supportive for the extrapolation concept

How to develop and apply pharmacometric models?

What are the considerations to make when planning and performing PK(PD) analyses?

- What is the question to be addressed?
 - Is the proposed dose in children adequate?
 - What is the quantitative exposure-response relationship in children
- What is known about the clinical pharmacology?
 - Pre-specify structure models and covariates to be tested
 - Does the sample size and number of observations allow for covariate testing?
 - Avoid testing correlated covariates such as weight, BMI, height and age

Evaluate the performance of the model

- **Termination messages** (successful estimation?)
- Simulation based diagnostics
 - Visual predictive checks
 - Numerical predictive checks
 - Posterior predictive checks
- Parameter uncertainty
 - Fisher information matrix (covariance step)
 - Non-parametric bootstrap
 - Sampling importance resampling (SIR)
 - Likelihood profiling
 - Cross-validation
- Goodness-of-fit diagnostics
 - Observations vs population/individual predictions
 - Residual plots

Pivotal PK study in children – design and modelling considerations

- Main question to address: Does the dose recommendation provide similar exposure as in adults, considering body size and age?
 - The study must cover relevant body size <u>and</u> age range
 - Take advantage of known clinical pharmacology properties of the drug/class
 - Collect sufficient number of PK samples to estimate relevant PK parameters

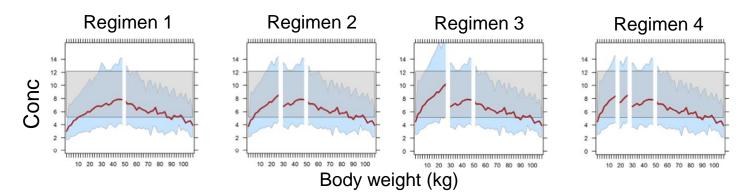
Pivotal PK study in children – design and modelling considerations

- High demands on the quality of the model
- Required model adaptations:
 - Body size relations (allometric scaling)
 CL_i=(CL/70)**0.75; V_i=(V/70)**1.0
 - Maturation functions for small children (age limit depending on specific organ ontogeny)
- Provide a battery of model evaluation metrics

Pivotal PK study in children – what is exposure similarity?

- Predefine what exposure metrics that should be used for comparison
 - Simulate exposure metrics from the model
 - Individual predictions generally not advised due to high shrinkage with sparse data

What is the success criteria for exposure similarity?


Pivotal PK study in children – what is exposure similarity? *Comparison of predicted mean exposures*

Comparison of Mean (%CV) Exposures				
PK parameter Mean (%CV)	Adolescents (12 to < 18 Years Old) (N=50)	Adults Phase 2/3 Population (N=1695)	Adolescents vs Adults % GMR (90% CI)	
AUC	1157 (50.6)	1027 (36.5)	109.7 (98.4,122.3)	
Cmax	546 (53.0)	511 (32.5)	98.5 (86.7,111.9)	

- Pros:
 - Easy to interpret the result
- Cons:
 - Individual predictions are often shrunk towards the population mean when the PK information is sparse
 - No information about the exposure in relation to body size

Pivotal PK study in children – what is exposure similarity? Simulated exposure in children

- Pros:
 - Good understanding of the exposure vs body weight, and in relation to the adult reference range
- Cons:
 - Subjective criteria for success
 - Can be difficult to simulate covariate distributions.

Exposure-response (PKPD) analysis in children

- Often exploratory a prospective analysis plan is still required
- Ideally a model established in adults could be used and the drug effect confirmed in children
- Model-based primary analysis could be used
 - Design the trial for the intended analysis
 - Use randomization test to assess actual significance level for parameter inclusion
 - Model-averaging techniques

Recent examples where population PK(PD) analyses have been pivotal in market authorization applications in children

- PK bridge to support dosing recommendations
 - Vimpat (partial onset seizures, ≥ 4 years)
 - Harvoni (HCV, ≥ 12 years)
 - Sovaldi (HCV, ≥ 12 years)
 - Mimpara (secondary hyperparathyroidism, ≥ 3 years)
 - Firazyr (acute attacks of hereditary angioedema, ≥ 2 years)

Conclusions

- Design studies for intended population PK and PKPD analyses
- Describe PK in relation to body size in children
- Prospectively decide on exposure similarity criteria
- Provide full documentation for model development
- Prepare the modelling and simulation reports such that assessors can review without access to data

References for good reporting standards (non exhaustive list)

- Guideline on reporting the results of population pharmacokinetic analyses. Committee for Medicinal Products for Human Use (2007)
- Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation EFPIA MID3 Workgroup, CPT:PSP, 2016
- Reporting guidelines for population pharmacokinetic analyses.
 Dykstra, K. et al. J. Pharmacokinet. Pharmacodyn. 2015
- Guidelines for the quality control of population pharmacokineticpharmacodynamic analyses: an industry perspective. Bonate, P.L. et al. AAPS J. 2012
- Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. Bergstrand M et al. AAPS J. 2011

