Comparison of Time-To-First-Event and Recurrent Event Methods in Multiple Sclerosis Trials

Alexandra Bühler, Qing Wang¹, Marcel Wolbers¹, Fabian Model¹, Jan Beyersmann²

 1 Roche, Biostatistics, Basel, Switzerland 2 Ulm University, Institute of Statistics, Ulm, Germany

PSI Workshop, October 29, 2019

Outline

- Introduction to MS and the ORATORIO trial in PPMS
- Recurrent event methods in RCTs
- Recurrent event analyses of the ORATORIO trial
- Simulation studies
 - Generic simulation study
 - MS-specific simulation study
- Conclusions

Multiple sclerosis (MS) disease course - 2013 consensus

- MS is a chronic, inflammatory and degenerative demyelinating disease of the human central nervous system
- Basic clinical phenomena of MS: relapses and disability progression
- Different disease courses: relapsing-remitting, secondary progressive and the primary progressive MS (RRMS, SPMS and PPMS)

FDCE, First Demyelinating Clinical Episode; RIS, radiologically isolated syndrome

ORATORIO: Roche's pivotal study of ocrelizumab in PPMS

- Phase III trial
- n = 732 subjects, 2 : 1 randomization ocrelizumab versus placebo
- Primary endpoint: Time from randomization to the first 12-week confirmed disability progression (CDP12)
 - Definition based on longitudinal assessments of Expanded Disability Status Scale (EDSS)
 - Events must be initial disability progression (IDP) which are confirmed (CDP12)
 - **★** IDP: increase in EDSS by \geq 1.0 points (if baseline EDSS \leq 5.5) or \geq 0.5 points (if baseline EDSS > 5.5)
 - ★ CDP12: increase sustained for at least 12 weeks

Time-to-first-event analysis of the ORATORIO trial

Cox proportional hazards model and log-rank test:

	OCR (N=488)	PLA (N=244)
Patients included in analysis	487 (100.0 %)	244 (100.0 %)
Patients with first CDP12 event (%)	160 (32.9 %)	96 (39.3 %)
Time-to-first-event analysis p-value (log-rank)	0.0321	
p-value (log-rafik)	0.0	321
HR (95% CI)	0.76 [0.59, 0.98]	

Recurrent event definition

Event	Definition	
	increase in EDSS score of ≥ 1.0 (if baseline EDSS ≤ 5.5) or	
First CDP12 event	\geq 0.5 points (if baseline EDSS $>$ 5.5) from the baseline EDSS score,	
	confirmed for at least 12 weeks (CDP12)	
	increase in EDSS score of ≥ 1.0 (if reference EDSS ≤ 5.5) or	
Repeated CDP12 event	\geq 0.5 points (if reference EDSS $>$ 5.5) from a reference EDSS score,	
	confirmed for at least 12 weeks (CDP12)	

Reference EDSS score:

- Readjustment of reference EDSS level after each event
- Definition:
 - ► First CDP12 event: baseline EDSS score
 - $lacktriangleright j^{th}$ CDP12 event: EDSS score at IDP of $(j-1)^{th}$ CDP12 event

Recurrent event definition for a stylized subject

 $IDP_i = j^{th}$ initial disability progression, $C_i = confirmation of <math>IDP_i$, $CDP_i = j^{th}$ confirmed disability progression (event) $Ref_i = reference EDSS$ score for j^{th} CDP, $T_i = time to onset of the <math>j^{th}$ CDP

- Reference EDSS level readjusted after each event
- CDP definition looks into the future (as for the established time-to-first CDP definition)

Recurrent event methods

Model	Description	
Negative binomial (NB)	- Parametric rate-based model - Given gamma frailty, underlying recurrent event process is Poisson - Random effect induces dependency between recurrent events - Constant event rates over time - Effect measure: RR	
Lin-Wei-Yang-Ying (LWYY)	- Semiparametric rate-based model - Allows arbitrary dependence structure between recurrent events - Baseline rate function unspecified - Effect measure: RR	
Andersen-Gill (AG)	- Semiparametric intensity-based model - Extension of Cox proportional hazards model - Dependence structure among recurrent events must be fully specified, (e.g., via conditioning on the past, internal time-varying covariates) - Baseline intensity function unspecified - If only adjusted for baseline covariates, underlying recurrent event process is Poisson with unspecified baseline intensity function - Effect measure: HR	

⇒ All methods (NB, LWYY and AG model) estimate the 'overall' treatment effect!

Rate-based vs Intensity-based Modelling

- Conditional intensity-based model requires full specification of the past history (event, censoring, internal/external covariate, etc.)
 - Recurrent events are conditionally uncorrelated given the past history
 - Very sensitive to model misspecification
- Marginal rate-based model conditions only on a part of the underlying process history
 - Allows for dependence structure between recurrent events
- If the past information is incomplete, a rate function rather than a intensity function is targeted.
- The rate function can be interpreted as the average intensity function at time t across all possible histories.
- Roughly speaking: LWYY=AG with robust SE

Recurrent event analyses of the ORATORIO trial

Number of CDP12 events during double-blind treatment period:

Treatment group	No. of first CDP12 events	No. of repeated CDP12 events
PLA (N=244)	96	124
OCR (N=488)	160	190
Total	256	314

 \implies 58/314 (18%) CDP12 events not used in the primary time-to-first-event analysis

Recurrent event analyses of the ORATORIO trial

Cumulative mean function of CDP12 events:

OCR or PLA patients experience on average 0.37 (95% CI [0.31, 0.43]) or 0.46 (95% CI [0.36, 0.56]) 12-week CDPs over the first 120 weeks of the double-blind treatment period

Recurrent event analyses of the ORATORIO trial

	Model	# CDP12 events included	Treatment effect
Time-to-first-event	Cox	256	HR 0.76 [0.59, 0.98], p=0.03
	NB		RR 0.71 [0.57, 0.91], p=0.005
Recurrent event	LWYY	314	RR 0.72 [0.57, 0.92], p=0.007
	AG		HR 0.72 [0.58, 0.91], p=0.005

- Smaller p-values observed for the recurrent event analyses
- ⇒ Do all recurrent event analyses protect type I error? How much power can be gained?
- ⇒ Investigate this in two simulation studies:
 - Generic simulation study
 - MS-specific simulation study

Generic simulation study - simulation setup

- Recurrent event data simulated according to a (mixed) non-homogeneous Poisson process
- Baseline intensity function of Weibull form (slightly decreasing event rates over time, as in ORATORIO data)
- Heterogeneity simulated with gamma frailty with variance ϕ :
 - homogeneous ($\phi=0.0$), moderate ($\phi=0.15$) and large ($\phi=1.0$) heterogeneity
- Treatment effect: HR = 1.0 (no effect) or HR=0.7
- n = 1000 subjects (1:1 randomization) recruited uniformly over 1 year
- Trial continues until 246 first CDP12 events observed
 - ▶ 80% power for time to first CDP12 analysis with HR=0.7
- N = 10000 simulation runs

Generic simulation study - simulation results

Treatment effect estimation:

- Selection effects in time-to-first-event approach
- Recurrent event methods provide unbiased treatment effect estimates in presence of heterogeneity

Generic simulation study - simulation results

Power and type I error:

- ⇒ Recurrent event approaches outperform time-to-first-event approach in terms of statistical power!
- ⇒ Type I error inflated for the AG model in presence of heterogeneity

MS-specific simulation study - simulation setup

Idea:

 Simulation of longitudinal ordinal EDSS measurements based on a time-homogeneous multistate model (transition intensities chosen according to ORATORIO data)

MS-specific simulation study - simulation setup

- Treatment effect and heterogeneity simulated on upper diagonal (= EDSS worsenings) of the EDSS transition intensity matrix
 - ► Treatment effect sizes: HR = 1.0 (no effect) or HR = 0.7
 - ▶ Gamma frailty with variance ϕ : homogeneous ($\phi = 0.0$), moderate ($\phi = 0.15$) and large ($\phi = 1.0$) heterogeneity
- Recurrent CDP endpoint derived based on simulated EDSS data
 - Simulated treatment effect sizes on transition intensity do not translate
 1: 1 to effect sizes for recurrent events
- n = 1000 subjects recruited uniformly over 1 year, trial continues until 246 first CDP events observed
- 1:1 randomization
- \bullet N = 10000 simulation runs

MS-specific simulation study - simulation results

Power and type I error:

- ⇒ Recurrent event approaches outperform time-to-first-event approach in terms of statistical power!
- ⇒ Type I error inflated for the AG model in presence of heterogeneity

Conclusions

- Recurrent event analysis use all clinically relevant disability progression data and increase power but add complexity
- \bullet Sample size of a trial with a recurrent endpoint could be 10-20% lower compared to a time-to-first-event endpoint in the PPMS setting
- Type I error inflated for the AG model in the presence of heterogeneity
- Comparable performance of the LWYY and NB models
- Semiparametric LWYY model is recommende as primary analysis in RCTs
- NB model already popular for the analysis of recurrent relapses in MS
- Extension: multitype recurrent event models (CDP, 9HPT and T25FW)