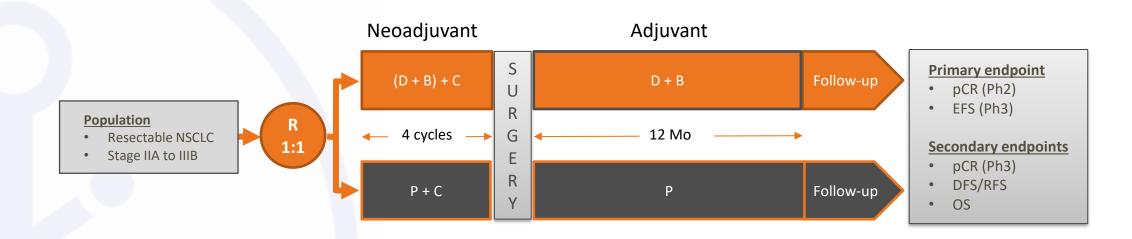
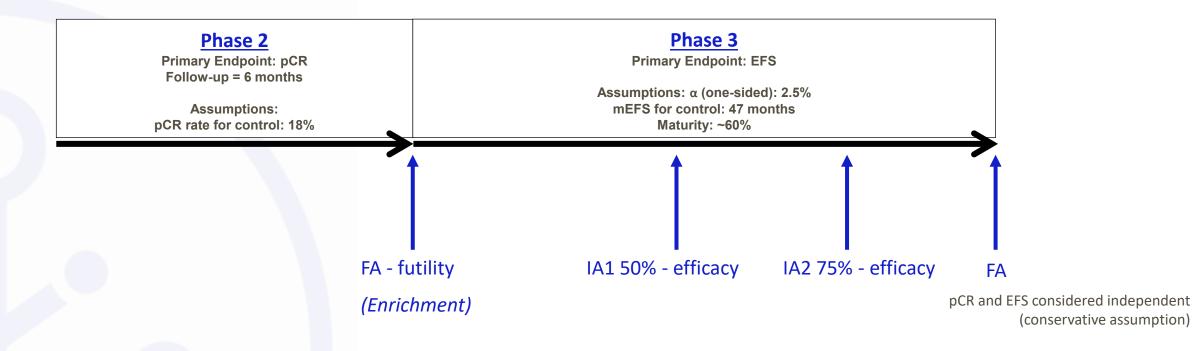

A simulation study to compare Group Sequential Designs for Subpopulation testing and Enrichment

Anaïs Andrillon, Julien Tanniou, Frédéric Dubois, Marie-Karelle Riviere


Background

- Non-Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer (~85% of cases)
- Unmet need: Despite current therapies, many patients relapse, and treatment response is inconsistent
- Introducing a new peri-operative treatment
- Opportunity to have big impact on the disease
- Opportunity to increase cure rates with a peri-operative approach
 - → Still high unmet need only ~20% pCR (pathological complete response) rates observed
 - → High rates of recurrence for patients who do not achieve pCR
- Biological heterogeneity in response to experimental treatment suggests that level of biomarker expression may predict better treatment outcomes
- Large commercial opportunity
- Competitive landscape

A randomized, open-label phase 2/3 peri-operative trial of Drug D + B in combination with chemotherapy C in resectable NSCLC


Subgroups:

- (S⁻) Biomarker < x [prevalence 40%]
- (S⁺) Biomarker ≥ x [prevalence 60%]

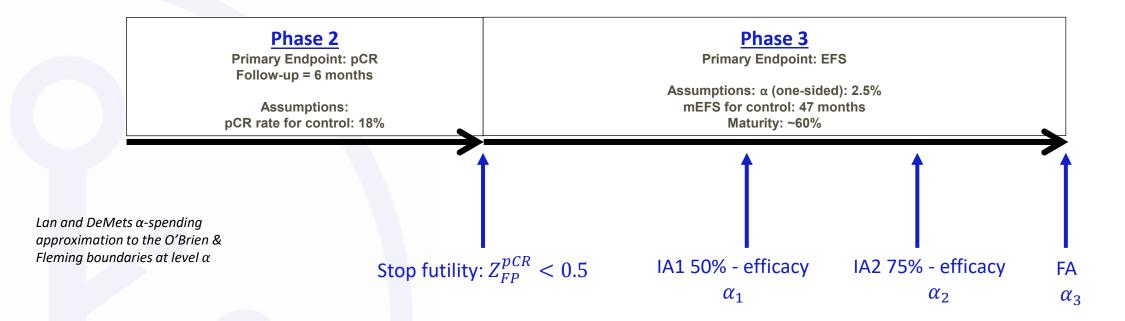
All comers: FP = S- + S+

- Study design: Phase 2/3, peri-operative treatment in resectable NSCLC
- Patient population: Stage IIA—IIIB, resectable NSCLC
- Two treatment arms: D + B (+ chemotherapy) vs. P (+ chemotherapy)
- Endpoints:
- Phase 2: Pathological Complete Response (pCR) defined as the absence of viable tumor cells in resected tissue
- Phase 3: Event-Free Survival (EFS) time to recurrence, progression, or death

Which strategy when potential subgroup effect?

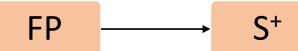
- Group sequential design in Phase 3 with 2 IAs for efficacy
- Potential identified subgroup more likely to respond to treatment with uncertainty on possible effect on the whole population or subgroup only
- Claim on both population (FP and S+) would be appreciated
- Stop trial when whole population significant
- Which strategy?

Outline

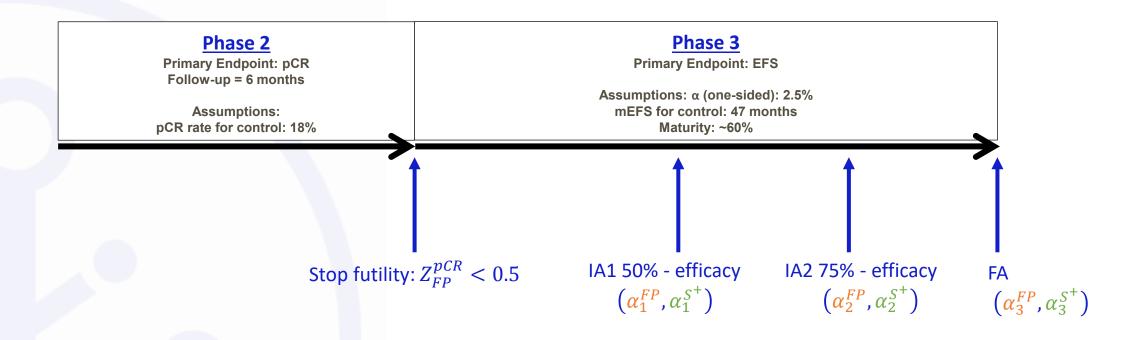

1. Introduction

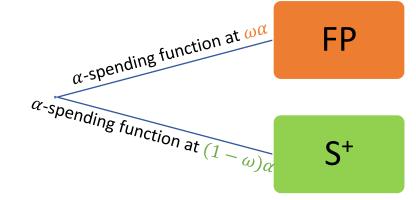
2. Methods

- 1. Phase 2/3 GSD with population only
- 2. Fallback design Phase 2/3 with subpopulations testing
 - Hierarchical procedure
 - Bonferroni
 - Holm / Ye (2013)
 - Zhao et al. (2010) with and without enrichment
- 3. Enrichment Phase 2/3
 - "Largest population from the first effective subgroup"
- 4. Fallback design and Enrichment Phase 2/3 with subpopulations testing
- 3. Simulations
- 4. Conclusion

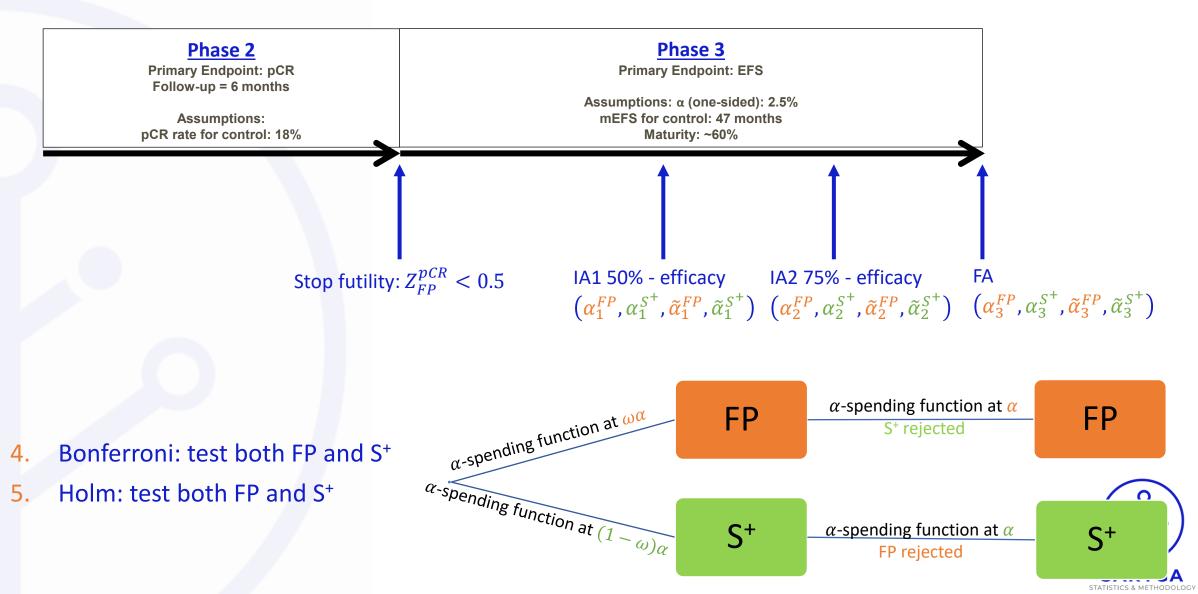


Simple procedures

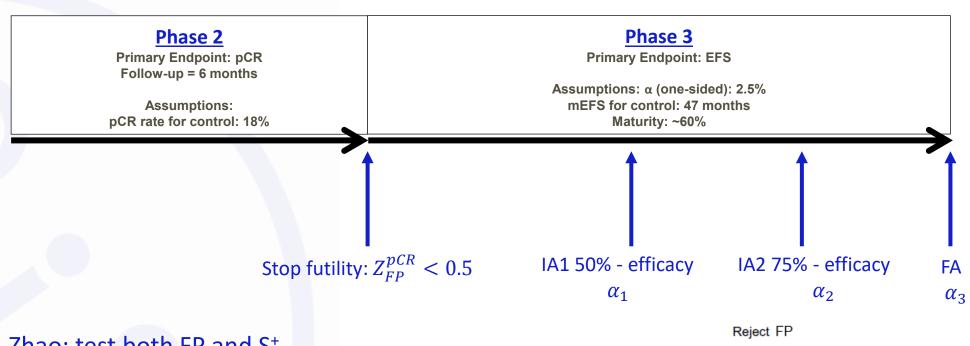

- 1. GSD with full population (no subgroup considered) as a reference for comparison: test FP only
- 2. Hierarchical: test $S^+ \rightarrow \text{test FP}$
- 3. Hierarchical: test $FP \rightarrow test S^+$



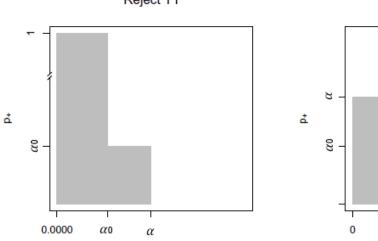
Bonferroni & Holm procedure (Ye et al. Stat Med 2013)

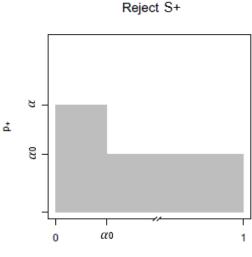


4. Bonferroni: test both FP and S⁺

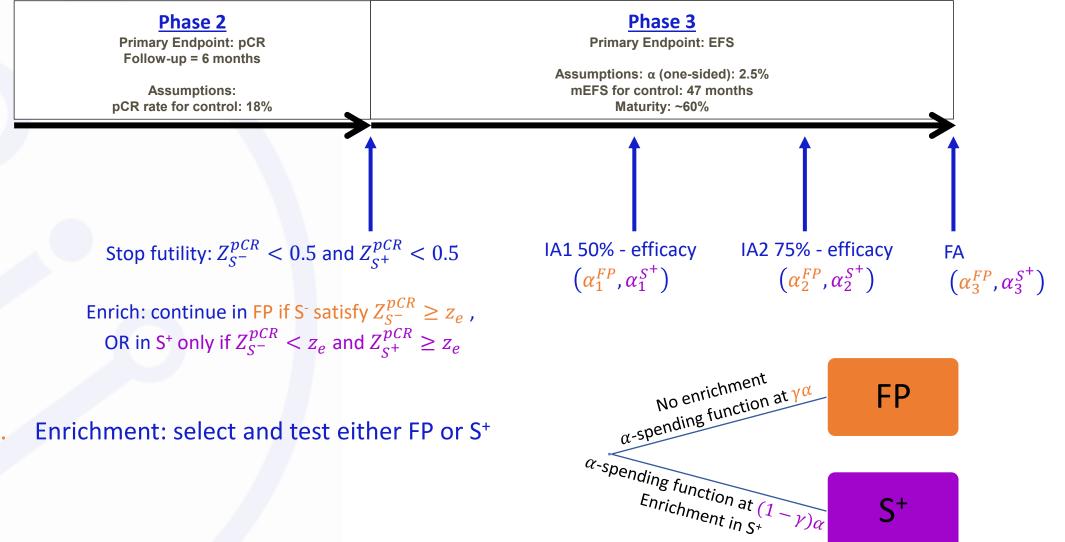


Bonferroni & Holm procedure (Ye et al. Stat Med 2013)

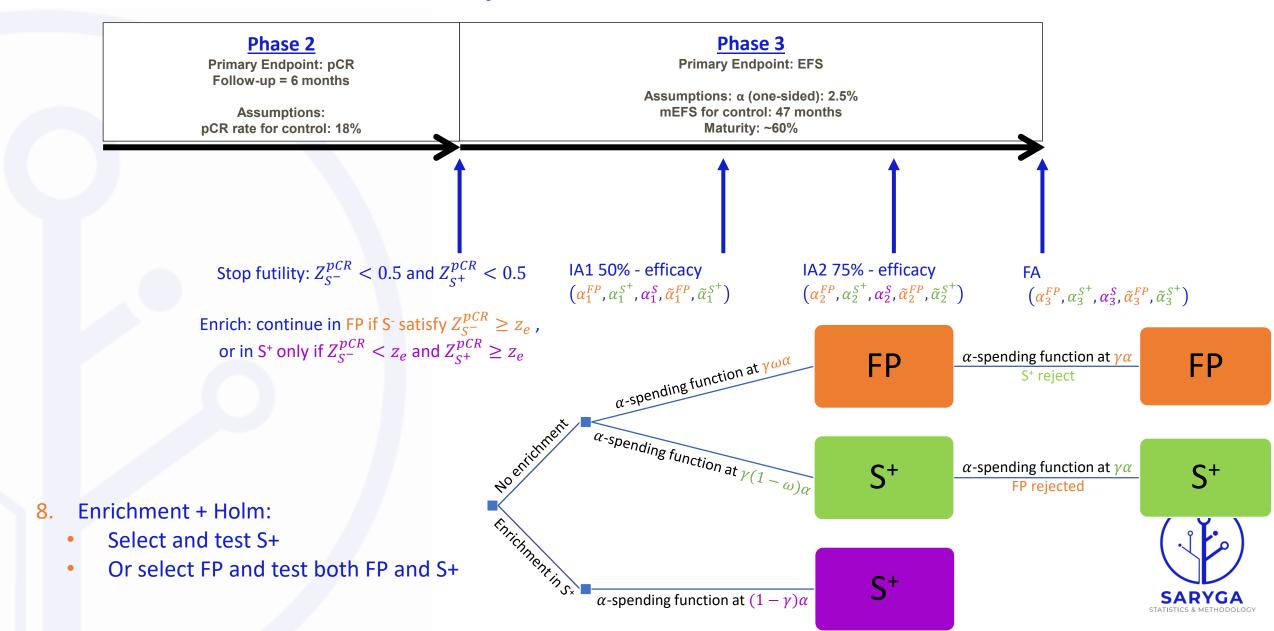

Zhao procedure (Zhao et al. Stat. Biopharm. Res. 2010)



6. Zhao: test both FP and S⁺


 α_0 to have a trade-off between FP and S⁺

- \triangleright If α_0 close to α : favor FP
- \triangleright If α_0 close to 0: favor S⁺
- → without enrichment
- → with enrichment: <u>increase prevalence</u> of the sensitive subgroup in the study compared to prevalence in the general population



Enrichment

Enrichment + Holm procedure

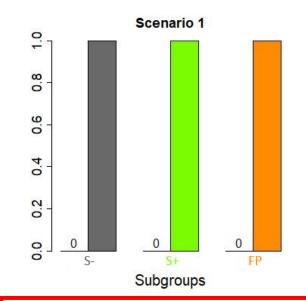
Simulations

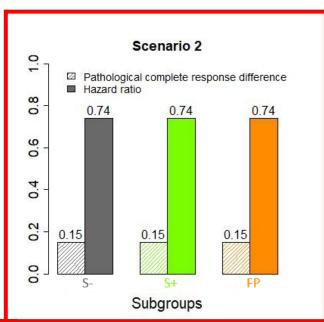
N = 820 patients included in total (including patients in S⁻ when enrichment)

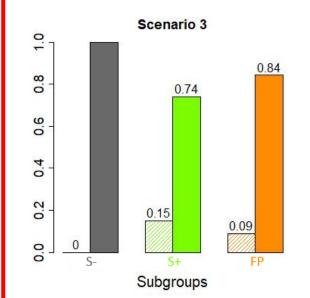
Phase 2

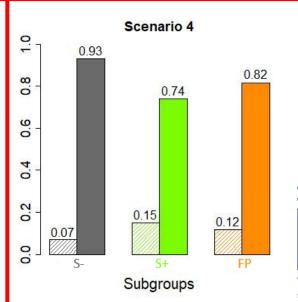
Primary Endpoint: pCR Follow-up = 6 months

Assumptions:

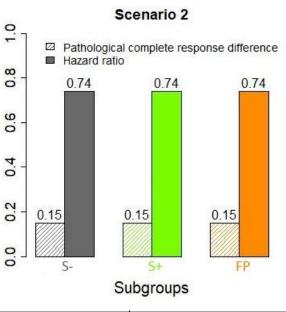

pCR rate for control: 18%


Phase 3

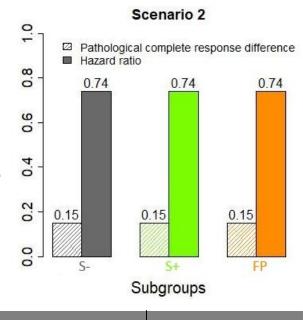

Primary Endpoint: EFS


Assumptions: α (one-sided): 2.5% mEFS for control: 47 months
Maturity: ~60%

- IAs at 50% and 75% IF
- Prevalences (S⁻, S⁺) = (40%, 60%)
- Number of patients for phase 2:260 patients (130 par arm)



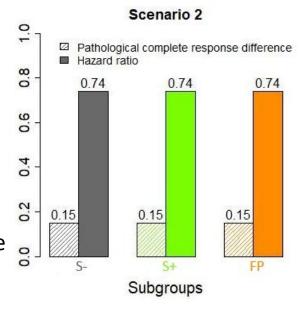
Sample size calculated to have 90% power for a simple seamless Phase 2/3 without considering subpopulations when there is an effect in all groups



	Phase 2						TOTAL					
		FA			IA-1		IA2		FA		IOIAL	
		F. skilik.	Times	Calcat FD / Cu	Power	Time	Cum Power	Time	Cum Power	Times	Clabal vaiget Daiget beth	
Scenario	Design	Futility	Time	Select FP / S+	FP/S	Time	FP/S	Time	FP/S	Time	Global reject Reject both	
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90% .	

Hierarchical S⁺->FP:

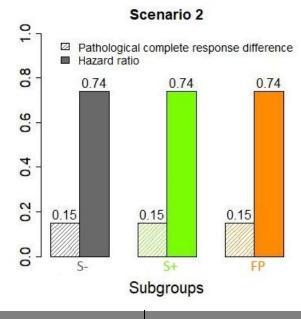
- Power around 70% for both: when S⁺ is significant, FP is also usually significant as more sample size/power
- Trials stop at later analysis



			Phase 2					тот	ΛΙ			
			FA			IA-1			FA		TOTAL	
		Futility	Time	Select FP / S+	Power	Time	Cum Power	Time	Cum Power	Time	Global reject	Reject hoth
Scenario	Design	racicity	111110		FP/S	111110	FP/S	111110	FP/S	Time	Otobat reject	neject both
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%	
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%

Hierarchical FP->S:

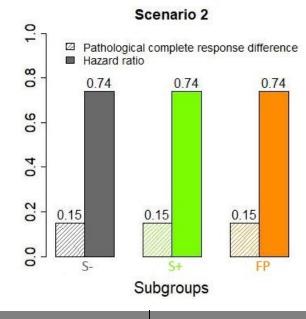
- 90% power for FP as expected
- Low power (42%) for S⁺ as:
 - Trial not powered for S⁺/would require higher sample size (\u2-18%)
 - Trial stop when FP significant so potentially at previous IAs with even lower sample size/power (↘-30%)



	Phase							TO	ΓΛΙ			
			FA			IA-1		IA2			TOTAL	
		Futility	Time	Select FP / S+	Power	Time	Cum Power	Time	Cum Power	Time	Global reject	Reject both
Scenario	Design	ructurey	111110		FP/S	10	FP/S	111110	FP/S			nojour both
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%	•
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%

Bonferroni & Holm:

- High power for FP: 85%/86%, only a small decrease of power
- But more chance to stop at later stages
- 60%/70% chances to reject also S+, with Holm > Bonferroni as expected



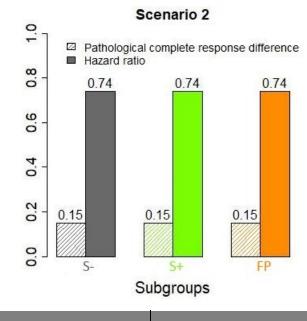
			Phase 2			Phase 3						TOTAL	
		FA		IA-1		IA2		FA		TOTAL			
			Time	Select FP / S+	Power	Time	Cum Power	Timo	Cum Power	Time	Clobal raiset	Dojoot hoth	
Scenario	Design	Futility	Tille	Select FP / ST	FP/S	Tille	FP/S	Time	FP/S	Tille	Global reject	neject botti	
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%		
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%	
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%	
	Fallback Bonferroni	1%	19		16%/6%	50	58%/33%	71	85%/62%	101	86%	60%	
	Fallback Holm	1%	19		17%/9%	50	60%/42%	71	86%/70%	101	86%	70%	

Zhao:

- With $\alpha_0 = \frac{\alpha}{5}$, $\frac{\alpha}{2}$, $\frac{4\alpha}{5}$ corresponding to different compromise between FP and S⁺
- 81%/89% power for FP depending on α_0 and 45%/58% for S⁺

			Phase 2					то	ΓΔΙ			
			FA		IA-	IA-1 IA2			FA		10	IAL
Scenario	Design	Futility	Time	Select FP / S+	Power FP/S	Time	Cum Power FP/S	Time	Cum Power FP/S	Time	Global reject	Reject both
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%	•
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%
	Fallback Bonferroni	1%	19		16%/6%	50	58%/33%	71	85%/62%	101	86%	60%
	Fallback Holm	1%	19		17%/9%	50	60%/42%	71	86%/70%	101	86%	70%
	Fallback Zhao (0.6,0.4) a0=a/5	1%	19		16%/12%	50	55%/40%	71	81%/58%	101	82%	57%
	Fallback Zhao (0.6,0.4) a0=a/2	1%	19		21%/11%	50	62%/36%	71	86%/50%	101	87%	49%
	Fallback Zhao (0.6,0.4) a0=4a/5	1%	19		25%/11%	50	67%/33%	71	89%/45%	101	89%	44%

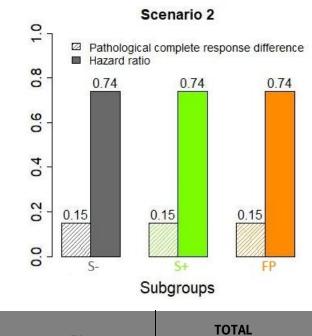
- Zhao with enrichment:
 - For the same $\alpha_0 = \frac{\alpha_k}{2}$, it slightly decreases power for FP, but increases power for S⁺
 - Timelines are slightly increased



			Phase 2				TOTAL					
			FA		IA-	1	IA2		FA		10	IAL
Scenario	Design	Futility	Time	Select FP / S+	Power FP/S	Time	Cum Power FP/S	Time	Cum Power FP/S	Time	Global reject	Reject both
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%	
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%
	Fallback Bonferroni	1%	19		16%/6%	50	58%/33%	71	85%/62%	101	86%	60%
	Fallback Holm	1%	19		17%/9%	50	60%/42%	71	86%/70%	101	86%	70%
	Fallback Zhao (0.6,0.4) a0=a/5	1%	19		16%/12%	50	55%/40%	71	81%/58%	101	82%	57%
	Fallback Zhao (0.6,0.4) a0=a/2	1%	19		21%/11%	50	62%/36%	71	86%/50%	101	87%	49%
	Fallback Zhao (0.6,0.4) a0=4a/5	1%	19		25%/11%	50	67%/33%	71	89%/45%	101	89%	44%
	Fallback Zhao with enrichment (0.75,0.25) a0=a/2	1%	19		18%/15%	53	58%/46%	73	84%/64%	103	88%	60%
1												

Enrichment:

- Futility calibrated to have the same % of stopping under null scenario 1
- With an α split in favor of FP and low chances to enrich: 93% chances to go with FP and 83% power for FP
- Otherwise, highly decreases performance for FP as expected
- By construction, no chance to reject S⁺ if FP selected (thus only 3%-16%)
- Enrichment may increase timelines by 10 months
- 104 patients in non-responsive subgroup "lost" for final analysis when S⁺ selected

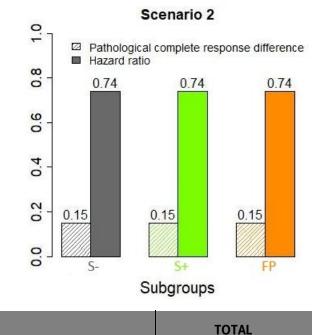

			Phase 2					TOTAL				
			FA		IA-	-1	IA2	2	FA			JIAL
Scenario	Design	Futility	Time	Select FP / S+	Power FP/S	Time	Cum Power FP/S	Time	Cum Power FP/S	Time	Global reje	ct Reject both
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%	
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%
	Fallback Bonferroni	1%	19		16%/6%	50	58%/33%	71	85%/62%	101	86%	60%
	Fallback Holm	1%	19		17%/9%	50	60%/42%	71	86%/70%	101	86%	70%
	Fallback Zhao (0.6,0.4) a0=a/5	1%	19		16%/12%	50	55%/40%	71	81%/58%	101	82%	57%
	Fallback Zhao (0.6,0.4) a0=a/2	1%	19		21%/11%	50	62%/36%	71	86%/50%	101	87%	49%
	Fallback Zhao (0.6,0.4) a0=4a/5	1%	19		25%/11%	50	67%/33%	71	89%/45%	101	89%	44%
	Fallback Zhao with enrichment (0.75,0.25) a0=a/2	1%	19		18%/15%	53	58%/46%	73	84%/64%	103	88%	60%
	Enrichment (4/5,1/5) Zenrich=0	3%	19	93%/4%	22%/0%	50/61	62%/2%	71/81	83%/3%	101/111	86%	
	Enrichment (4/5,1/5) Zenrich=1	3%	19	78%/20%	18%/1%	50/61	52%/7%	71/81	70%/14%	101/111	83%	
	Enrichment (1/3,2/3) Zenrich=0	3%	19	93%/4%	11%/1%	50/61	49%/2%	71/81	77%/4%	101/111	80%	
	Enrichment (1/3,2/3) Zenrich=1	3%	19	78%/20%	9%/3%	50/61	41%/11%	71/81	64%/16%	101/111	80%	

Enrichment+Holm:

- Similar conclusion as for enrichment for rejection of FP and timelines
- Compared to enrichment only, good chances to also reject S⁺ (64%-67%)

Phase 2

Phase 3


		FA			IA-1		IA2		FA		101712	
Scenario	Design	Futility	Time	Select FP / S+	Power FP/S	Time	Cum Power FP/S	Time	Cum Power FP/S	Time	Global rejec	t Reject both
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%	
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%
	Fallback Bonferroni	1%	19		16%/6%	50	58%/33%	71	85%/62%	101	86%	60%
	Fallback Holm	1%	19		17%/9%	50	60%/42%	71	86%/70%	101	86%	70%
	Fallback Zhao (0.6,0.4) a0=a/5	1%	19		16%/12%	50	55%/40%	71	81%/58%	101	82%	57%
	Fallback Zhao (0.6,0.4) a0=a/2	1%	19		21%/11%	50	62%/36%	71	86%/50%	101	87%	49%
	Fallback Zhao (0.6,0.4) a0=4a/5	1%	19		25%/11%	50	67%/33%	71	89%/45%	101	89%	44%
	Fallback Zhao with enrichment (0.75,0.25) a0=a/2	1%	19		18%/15%	53	58%/46%	73	84%/64%	103	88%	60%
	Enrichment (4/5,1/5) Zenrich=0	3%	19	93%/4%	22%/0%	50/61	62%/2%	71/81	83%/3%	101/111	86%	
	Enrichment (4/5,1/5) Zenrich=1	3%	19	78%/20%	18%/1%	50/61	52%/7%	71/81	70%/14%	101/111	83%	
	Enrichment (1/3,2/3) Zenrich=0	3%	19	93%/4%	11%/1%	50/61	49%/2%	71/81	77%/4%	101/111	80%	
	Enrichment (1/3,2/3) Zenrich=1	3%	19	78%/20%	9%/3%	50/61	41%/11%	71/81	64%/16%	101/111	80%	
	Fallback Holm + Enrichment (4/5,1/10,1/10) Zenrich=0	3%	19	94%/4%	22%/8%	50/61	63%/39%	71/81	84%/67%	101/111	86%	65%
	Fallback Holm + Enrichment (4/5,1/10,1/10) Zenrich=1	3%	19	78%/20%	18%/7%	50/61	52%/37%	71/81	70%/66%	101/111	82%	54%
	Fallback Holm + Enrichment (1/3,1/3,1/3) Zenrich=0	3%	19	94%/4%	11%/6%	50/61	50%/35%	71/81	78%/64%	101/111	81%	61%
	Fallback Holm + Enrichment (1/3,1/3,1/3) Zenrich=1	3%	19	78%/20%	9%/7%	50/61	41%/36%	71/81	65%/66%	101/111	80%	50%

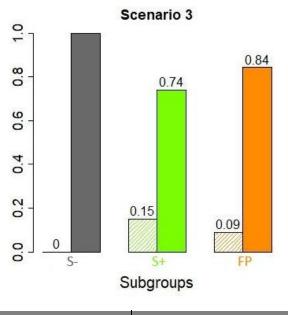
Summary for scenario 2:

- In general, good percentage for any rejection
- Best approaches for the rejection FP: hierarchical FP->S⁺, Bonferroni, Holm, (Zhao, Enrichment, Enrichment+Holm) when α is favoring FP

Phase 2

For those approaches except enrichment, could reject both

Phase 3


		FA		IA-1		IA2		F/	4			
Scenario	Design	Futility	Time	Select FP / S+	Power FP/S	Time	Cum Power FP/S	Time	Cum Power FP/S	Time	Global reject	Reject both
Sc2	Full pop	1%	19		27%	50	70%	71	90%	101	90%	
	Fallback Hierarchical S->FP	1%	19		10%/12%	50	42%/45%	71	70%/72%	101	72%	70%
	Fallback Hierarchical FP->S	1%	19		26%/10%	50	70%/32%	71	90%/42%	101	90%	42%
	Fallback Bonferroni	1%	19		16%/6%	50	58%/33%	71	85% /62%	101	86%	60%
	Fallback Holm	1%	19		17%/9%	50	60%/42%	71	86% /70%	101	86%	70%
	Fallback Zhao (0.6,0.4) a0=a/5	1%	19		16%/12%	50	55%/40%	71	81%/58%	101	82%	57%
	Fallback Zhao (0.6,0.4) a0=a/2	1%	19		21%/11%	50	62%/36%	71	86% /50%	101	87%	49%
	Fallback Zhao (0.6,0.4) a0=4a/5	1%	19		25%/11%	50	67%/33%	71	89% /45%	101	89%	44%
	Fallback Zhao with enrichment (0.75,0.25) a0=a/2	1%	19		18%/15%	53	58%/46%	73	84% /64%	103	88%	60%
	Enrichment (4/5,1/5) Zenrich=0	3%	19	93%/4%	22%/0%	50/61	62%/2%	71/81	83%/ 3%	101/111	86%	
	Enrichment (4/5,1/5) Zenrich=1	3%	19	78%/20%	18%/1%	50/61	52%/7%	71/81	70%/14%	101/111	83%	
	Enrichment (1/3,2/3) Zenrich=0	3%	19	93%/4%	11%/1%	50/61	49%/2%	71/81	77%/4%	101/111	80%	
	Enrichment (1/3,2/3) Zenrich=1	3%	19	78%/20%	9%/3%	50/61	41%/11%	71/81	64%/16%	101/111	80%	
	Fallback Holm + Enrichment (4/5,1/10,1/10) Zenrich=0	3%	19	94%/4%	22%/8%	50/61	63%/39%	71/81	84% /67%	101/111	86%	65%
	Fallback Holm + Enrichment (4/5,1/10,1/10) Zenrich=1	3%	19	78%/20%	18%/7%	50/61	52%/37%	71/81	70%/66%	101/111	82%	54%
	Fallback Holm + Enrichment (1/3,1/3,1/3) Zenrich=0	3%	19	94%/4%	11%/6%	50/61	50%/35%	71/81	78%/64%	101/111	81%	61%
	Fallback Holm + Enrichment (1/3,1/3,1/3) Zenrich=1	3%	19	78%/20%	9%/7%	50/61	41%/36%	71/81	65%/66%	101/111	80%	50%

Summary for scenario 3:

- Best approaches to reject S⁺: hierarchical S⁺->FP, Holm, (Zhao, Enrichment, Enrichment+Holm) when α is favoring S⁺ (56%-66%)
- As we could expect, the best approaches to reject S⁺ in scenario 3 are usually not the best to reject FP in scenario 2 (and vice versa) → no "best" approach although Holm performs well for both scenario

 Assuming same trend in recruitment with S⁺ only, timelines may be increased with enrichment (+16 months)

Phase 2 Phase 3 **TOTAL** IA-1 FA FA IA2 **Cum Power Cum Power Power Futility** Time Select FP / S+ Global reject Reject both Time Time Time Design FP/S FP/S FP/S Scenario Sc3 Full pop 11% 19 5% 49 21% 68 41% 95 41% Fallback Hierarchical S->FP 19 3%/10% 49 20%/39% 41%/63% 11% 68 95 63% 41% Fallback Hierarchical FP->S 11% 19 5%/3% 68 44%/38% 95 49 22%/18% 44% 38% Fallback Bonferroni 19 2%/5% 15%/28% 34%/54% 57% 32% 95 11% 49 68 Fallback Holm 19 3%/5% 19%/29% 42%/56% 95 57% 11% 49 68 40% Fallback Zhao (0.6,0.4) a0=a/5 11% 19 3%/10% 19%/37% 68 40%/61% 63% 39% 95 49 Fallback Zhao (0.6,0.4) a0=a/2 11% 19 4%/8% 20%/33% 68 40%/57% 95 60% 37% 49 Fallback Zhao (0.6,0.4) a0=4a/5 11% 19 4%/6% 20%/28% 68 41%/51% 56% 36% 49 95 Fallback Zhao with enrichment (0.75,0.25) a0=a/2 19 3%/11% 51 18%/42% 70 37%/66% 98 68% 35% 11% Enrichment (4/5,1/5) Zenrich=0 10% 19 42%/48% 2%/3% 49/61 9%/18% 68/81 18%/34% 95/111 52% Enrichment (4/5,1/5) Zenrich=1 10% 19 16%/74% 1%/4% 49/61 3%/27% 68/81 7%/52% 95/111 59% 19 53% Enrichment (1/3,2/3) Zenrich=0 10% 42%/48% 1%/8% 49/61 5%/27% 68/81 12%/40% 95/111 Enrichment (1/3,2/3) Zenrich=1 10% 19 0%/12% 49/61 68/81 5%/62% 95/111 67% 16%/74% 2%/42% Fallback Holm + Enrichment (4/5,1/10,1/10) Zenrich=0 52% 10% 19 46%/44% 2%/3% 49/61 10%/22% 68/81 21%/51% 95/111 20% Fallback Holm + Enrichment (4/5,1/10,1/10) Zenrich=1 19 1%/2% 49/61 7%/54% 10% 16%/74% 4%/23% 68/81 95/111 54% 7% Fallback Holm + Enrichment (1/3,1/3,1/3) Zenrich=0 19 1%/6% 49/61 8%/32% 68/81 18%/59% 95/111 60% 18% 10% 46%/44% 19 16%/74% 0%/7% Fallback Holm + Enrichment (1/3,1/3,1/3) Zenrich=1 10% 49/61 3%/37% 68/81 6%/65% 95/111 65% 6%

Conclusion

- Not all patients respond equally to the same treatment → Identifying these subgroups allows for targeted therapy, improving efficacy and reducing unnecessary toxicity
- Seamless Phase 2/3:
 - Reduces trial duration and patient recruitment phases, expediting clinical development
 - Possible adjustments at Phase 2 Transition including enrichment strategies
- No "best approach" in all scenarios → compromise between rejection of full population and subgroup
- Choose the strategy based on your level of confidence in who may benefit
 - If confident the treatment works in the full population, a simple design testing the full population is suitable
 - If confident the benefit is only in a subgroup, consider testing S⁺ only
 - If uncertain, a combined or adaptive approach may offer a balanced and flexible solution

Conclusion

- o In our motivating example: high uncertainty on subgroup effect while we wanted to favor FP but consider $S^+ \rightarrow$ our simulation study showed:
 - (Bonferroni or) Holm is a very good option across all scenarios while statistically simple to implement
 - Zhao has good performance overall, even without enrichment (as increasing study prevalence may be complex in practice)
 - Enrichment + Holm is statistically much more complex for no real gain in performance
- In our motivating example, the effect of the population is in fact driven by the subgroup as we have a prevalence of 60%
 - If we keep the same scenario for the "global population" and decrease prevalence of S⁺ to 20%, then subgroup effect will be very high but still a diluted in the population with a global effect in FP (tend to reject FP, difficult to identify subgroup effect)
 - If we keep the same effects in S^-/S^+ and decrease prevalence of S^+ to 20%: when only the subgroup responds performance are low as trial is not powered for that. Performance may be increased with enrichment but \triangle futility and enrichment rules that highly impact performances (balance accross all scenarios).
- Project specific: need to consider prevalences and perform simulations on scenarios of interest

Questions

