Benchmarking Bayesian subgroup shrinkage methods on clinical data

Björn Bornkamp

PSI conference 2025, London June 11, 2025

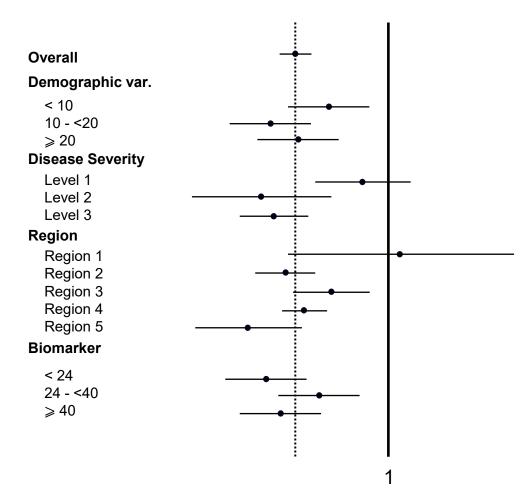
joint work with Sebastian Weber and David Ohlssen

Reimagining Medicine

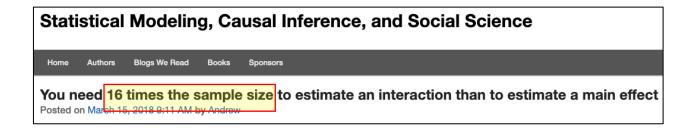
Agenda

- Introduction
- Simple subgroup shrinkage models
- Regression-based shrinkage models
- Benchmarking of methods on twin studies
 - Continuous, time-to-event and binary outcome

Subgroup Analysis & Forest plots



- Estimation of subgroup treatment effects challenging
 - Limited sample size & multiplicity



- Idea of shrinkage methods
 - Shrink subgroup treatment effects towards overall treatment effect
 - For given subgroup: Smaller MSE (more reliable), accepting some bias (bias-variance trade-off)
 - For subgroups with extreme observed effects: Less biased inference

Simple subgroup shrinkage models

Overall and fully stratified subgroup models

- Overall model
 - Linear predictor for patient i: $\eta_{i,j,k} = \beta_1 + \beta_2 z_i + \beta_3' x_i$
 - z_i : Treatment indicator, x_i : Additional covariates
- Fully stratified subgroup models
 - $\eta_{i,j,k} = \beta_{1,j,k} + \beta_{2,j,k} z_i + \beta_{3,j,k} x_i$
 - Index j: Subgroup variable (e.g. gender)
 - Index k: Subgroup within subgrouping variable (e.g. female)
 - Weakly informative priors on all model parameters
 - Fitted separately for each subgroup variable with index j and each subgroup with index k

Simple shrinkage model (review: Wang et al 2024)

- $\eta_{i,j,k} = \beta_{1,j,k} + \beta_{2,j,k} z_i + \beta'_3 x_i$
- Hierarchical priors for the treatment effect $\beta_{2,j,k} \sim N(\beta_{2,j}, \sigma_{2,j}^2)$
 - Subgroups within subgroup variable treated as exchangeable
 - adequate if no prior/external evidence that one of subgroups has differential treatment effect
- Prior for between-subgroup variance $\sigma_{2,i}^2$
 - Number of subgroups within a subgrouping variable small (2 5)
 - → challenging to estimate the variance from data
 - Select half-normal $HN(\tau)$ prior for $\sigma_{2,j}$ based on prior distribution of $|\beta_{2,j,k} \beta_{2,j,k'}|$
 - Quantiles of $\left|\beta_{2,j,k} \beta_{2,j,k'}\right|$ as fractions of planned treatment effect δ_{plan}

τ	5%	25%	50%	75%	95%
$0.5\delta_{plan}$	0.01	0.09	0.26	0.61	1.54
δ_{plan}	0.02	0.17	0.52	1.22	3.09

High shrinkage Low shrinkage

Pharmaceutical Statistics

Bayesian Hierarchical Models for Subgroup Analysis

First published: 15 July 2024 | https://doi.org/10.1002/pst.2424 | Citations: 2

Yun Wang 🔀 Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng

Regression-based shrinkage models

Global regression model

- Multiple subgroup variables → Multiple partially overlapping subgroups
 - Simple shrinkage model requires non-overlapping subgroups
 - Fit multiple simple subgroup shrinkage models (one per subgroup variable)

- Alternative: Global regression model based on subgroup indicators
 - (Dixon & Simon 1991, Jones et al. 2011, Wolbers et al. 2025)
 - Only one model fit required; all subgroup estimates derived from the same model
 - Provide "adjusted" parameter estimates (→ helps identify drivers of heterogeneity)

Global regression model

- - $s_{i,l}$: is a binary subgroup indicator for subgroup l = 1, ..., L.
 - L is the overall number of subgroups evaluated for all subgroup variables.
 - b_l , g_l : Prognostic and predictive effect of subgroup indicator $s_{i,l}$
 - For β_1 , β_2 and β_3 use weakly informative priors
 - For b_l , g_l use shrinkage prior distributions
- Note:
 - Shrinkage necessary: Standard regression would over-fit and no dummy coding for subgroup coefficients (parameters not identified in the frequentist sense)
 - Higher-order interactions across subgroups here not included

Shrinkage prior 1: Horseshoe Piironen & Vehtari (2017)

- Idea of original horseshoe prior (Carvalho et al 2009)
 - Shrink small signals aggressively towards 0; don't shrink large signals
 - Normal $(0, \tau^2 \lambda_i^2)$ prior with $\tau \sim Cauchy^+(0,1)$ and $\lambda_i \sim Cauchy^+(0,1)$
- Idea of regularized horseshoe (Piironen & Vehtari, 2017)
 - Large signals may be completely unpenalized for horseshoe
 - Use Normal $(0, \tau^2 \tilde{\lambda}_i^2)$ with $\tilde{\lambda}_i^2 = \frac{c^2 \lambda_i^2}{c^2 + \tau^2 c^2}$ with $c \sim Inv Gamma(\frac{\nu}{2}, s^2/2)$ instead of λ_i^2
 - Prior for global scale can be derived based on expected proportion of non-zero vs zero coefficients
 - Later use 0.5 (high shrinkage) and 1 (low shrinkage)

Shrinkage prior 2: R2D2 Zhang et al (2022)

- Basic idea: Prior on $R^2 = \frac{explained\ variance}{explained\ variance + residual\ variance}$
- Prior for each coefficient: Normal $(0, \tilde{\lambda}_i^2)$
 - Global shrinkage (overall prior variance) determined by beta prior distribution on R²
 - Local shrinkage (how to split prior variability across coefficients) determined by a Dirichlet prior
- Concentration parameter of Dirichlet: whether prior variability is evenly spread across all coefficients or concentrated on only a few
- In benchmarking later use a uniform distribution for R²
 Use concentration parameter equal to 0.2 (high shrinkage) and 0.5 (low shrinkage)
- Notes
 - For non-normal data use "pseudo-variance" (→ variance of intercept-only model on link scale)
 - Note: Unpenalized covariates formally don't enter R²

Benchmarking on twin studies

Idea of benchmarking

Fit: Every model using data from trial 1 (2)

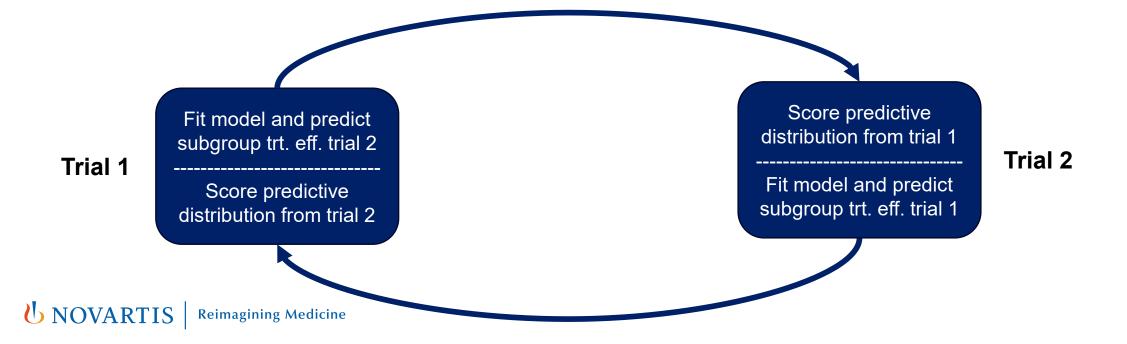
Out of sample prediction: For each subgroup, use the model to form predictive distribution of treatment effect in trial 2 (1)

Scoring: Predictive treatment effect distribution for each subgroup (and both directions) compared to observed treatment effect using scoring rule, rewarding low bias and uncertainty.

Ranking by case: Scores are calculated for each method and subgroup. Higher scores are better. Methods ranked according to average score (average across all subgroups and both directions of predicting).

Benchmarking data

- Continuous and time-to-event data
 - Utilize secondary endpoints from twin concurrent Phase 3 trials
 - Use each trial once for fitting and once for preciction (2 cycles of fit and predict)
- Binary data
 - Utilize primary endpoint from 4 similarly designed (& partially concurrent) Phase 3 trials
 - Here use 1 trial for model fitting and predict 3 trials (4 cycles of fit and predict)

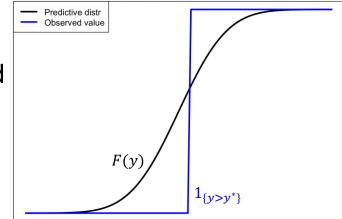


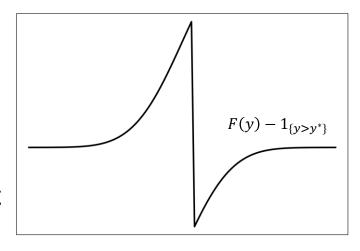
Case study methods – Continuous Ranked Probability Score and

- Scoring rules assess a predictive distribution vs an observed value
 - Here: Predictive distribution for subgroup from one trial → observed subgroup treatment effect in other trial
- The continuous ranked probability score (CRPS, Gneiting et al 2007) is given by

$$CRPS(F, y^*) = -\int_{-\infty}^{\infty} (F(y) - 1_{\{y > y^*\}})^2 dy$$

- F(y) cdf of the predictive distribution for subgroup treatment effect in one trial
- y* subgroup treatment effect observed in other trial
- CRPS is not scale invariant
 - Problematic when averaging score across predictions with different predictive variance
 - Scaled CRPS (Bolin & Wallin, 2023) solves this issue





Results (preliminary, averaged across 10 replicates)

Model (shrinkage)	Average Rank	Average SCRP (SE)			
	(across 3 cases)	Case 1	Case 2	Case 3	
Simple shrinkage (high)*	3.00	-2.77 (0.01)	-4.64 (0.02)	-4.56 (0.02)	
Simple shrinkage (low)*	3.00	-2.79 (0.01)	-4.65 (0.02)	-4.51 (0.03)	
Horseshoe (high)*	3.33	-3.08 (0.01)	-4.40 (0.04)	-4.54 (0.03)	
R2D2 (low)	3.33	-2.94 (0.01)	-4.64 (0.03)	-4.52 (0.04)	
R2D2 (high)*	4.00	-2.98 (0.01)	-4.55 (0.04)	-4.61 (0.03)	
Horseshoe (low)*	5.00	-3.09 (0.02)	-4.48 (0.03)	-4.62 (0.03)	
Fully stratified	6.67	-2.99 (0.01)	-5.90 (0.04)	-5.00 (0.04)	
Overall	7.67	-3.65 (0.03)	-4.82 (0.03)	-5.89 (0.04)	

^{*} Can lead to divergences in stan during model fitting

Discussion

- Prime-time for Bayesian shrinkage estimation (see also Wang et al 2024)
- Many options on how to perform subgroup shrinkage
- Benchmarking
 - Simulation Study: Challenging to be "truly" neutral
 - Alternative: Use concurrent, similarly designed studies to assess predictive ability
 - Limitations
 - There are always differences (known or unknown)
 - Small number of data-sets available
- Results
 - Outperformance of shrinkage versus standard methods
 - Shrinkage methods close together

BIOPHARMACEUTICAL REPORT VOLUME 31, NO. 4

2024 ASA BIOPHARMACEUTICAL SECTION REGULATORY-INDUSTRY STATISTICS WORKSHOP SESSION ON "BAYESIAN SHRINKAGE ESTIMATION FOR SUBGROUPS: IS IT READY FOR PRIME TIME?"

Talk I: Mark Rothmann (FDA/CDER/OTS/ OB): "Practical experiences with Bayesian subgroup shrinkage methods for drug trials snapshots"

Bayesian shrinkage estimation for subgroup analysis is ready for primetime. In 2019, the FDA posted

References

- Bolin, D., & Wallin, J. (2023). Local scale invariance and robustness of proper scoring rules. Statistical Science, 38, 140-159
- Carvalho, C. M. et al (2009). Handling sparsity via the horseshoe. Proceedings of Machine Learning Research, 5, 73-80
- Dixon, D. O., & Simon, R. (1991). Bayesian subset analysis. Biometrics, 871-881.
- Jones, H. E., Ohlssen, D. I., Neuenschwander, B., Racine, A., & Branson, M. (2011). Bayesian models for subgroup analysis in clinical trials. Clinical Trials, 8, 129-143.
- Piironen, J., & Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. Electronic Journal of Statistics 11, 5018-5051
- Wang, Y. et al. (2024). Bayesian hierarchical models for subgroup analysis. Pharmaceutical Statistics, 23, 1065-1083.
- Wolbers, M., et al (2025). Using shrinkage methods to estimate treatment effects in overlapping subgroups in randomized clinical trials with a time-to-event endpoint. Statistical Methods in Medical Research
- Zhang, Y. D. et al (2022). Bayesian regression using a prior on the model fit: The R2-D2 shrinkage prior. Journal of the American Statistical Association, 117, 862-874.

Björn Bornkamp bjoern.bornkamp@novartis.com

Thank you

