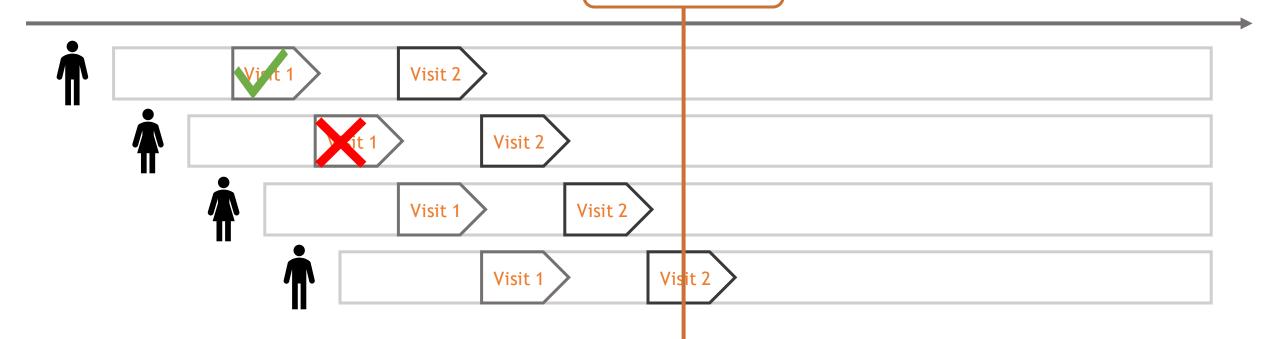
PSI 2025 Conference 9th June 2025

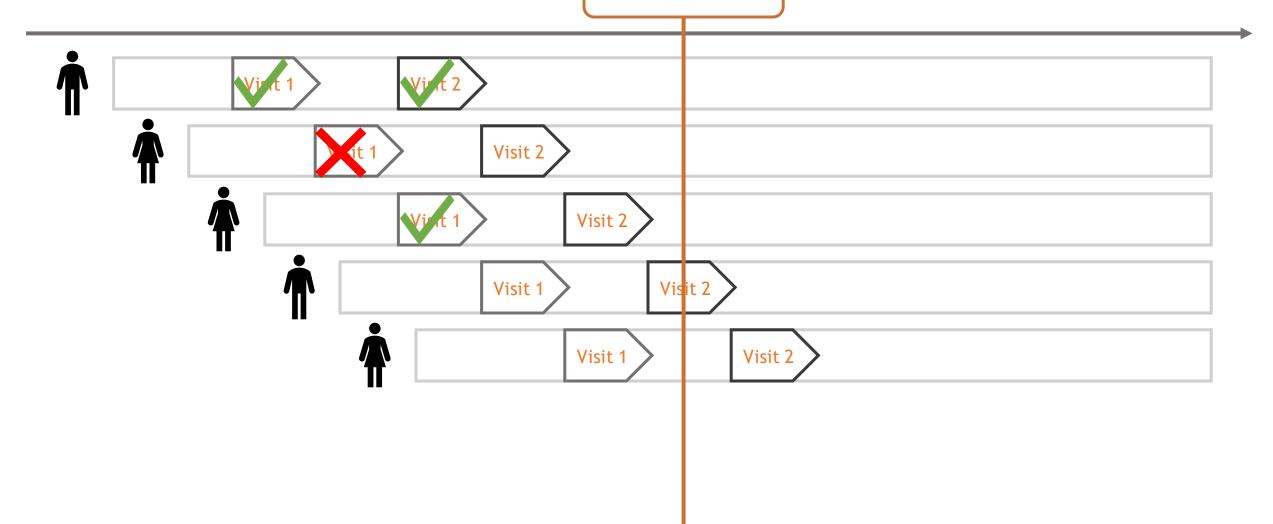
WHEN TO SCHEDULE THE INTERIM ANALYSIS IN THE PRESENCE OF MISSING DATA?

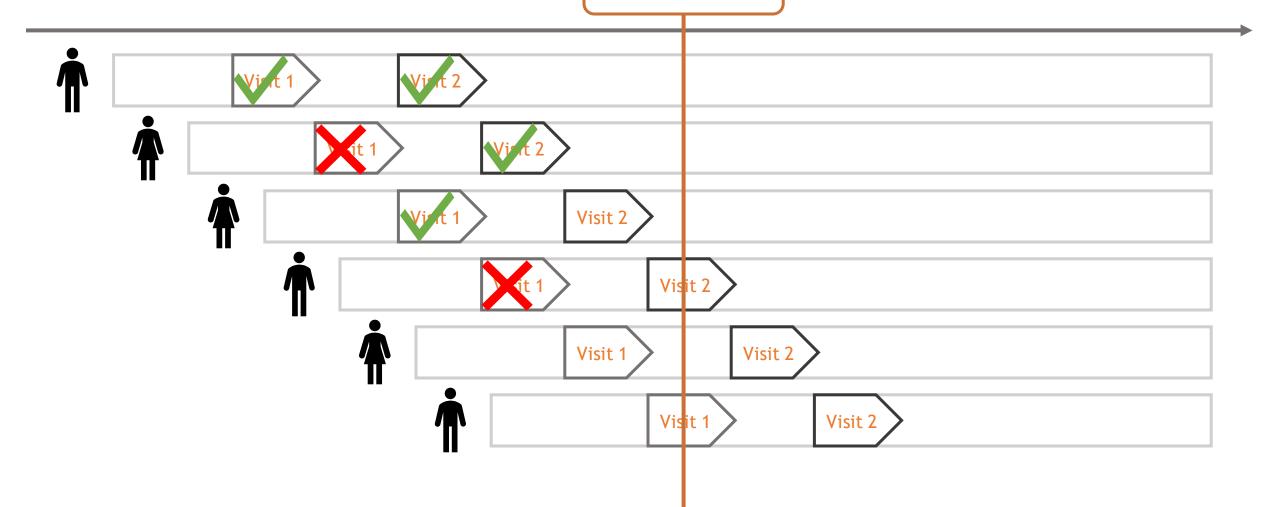
Neža Dvoršak ¹, Jianmei Wang ², Thomas Burnett ¹, Christopher Jennison ¹, Robin Mitra ³ ¹ University of Bath, ² Roche UK, ³ University College London

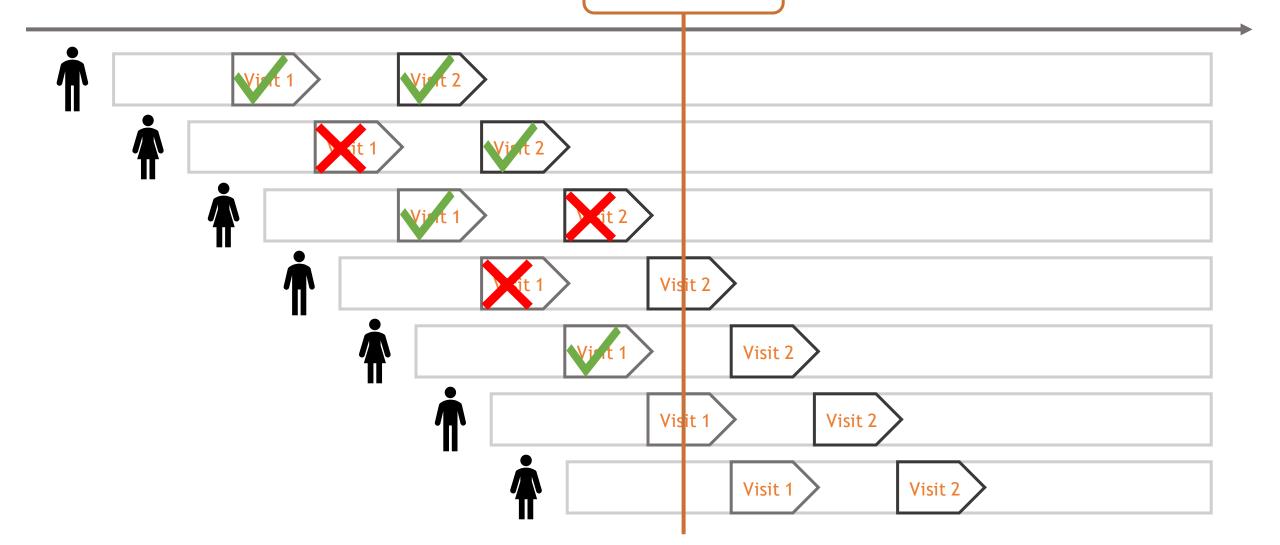
Interim analysis

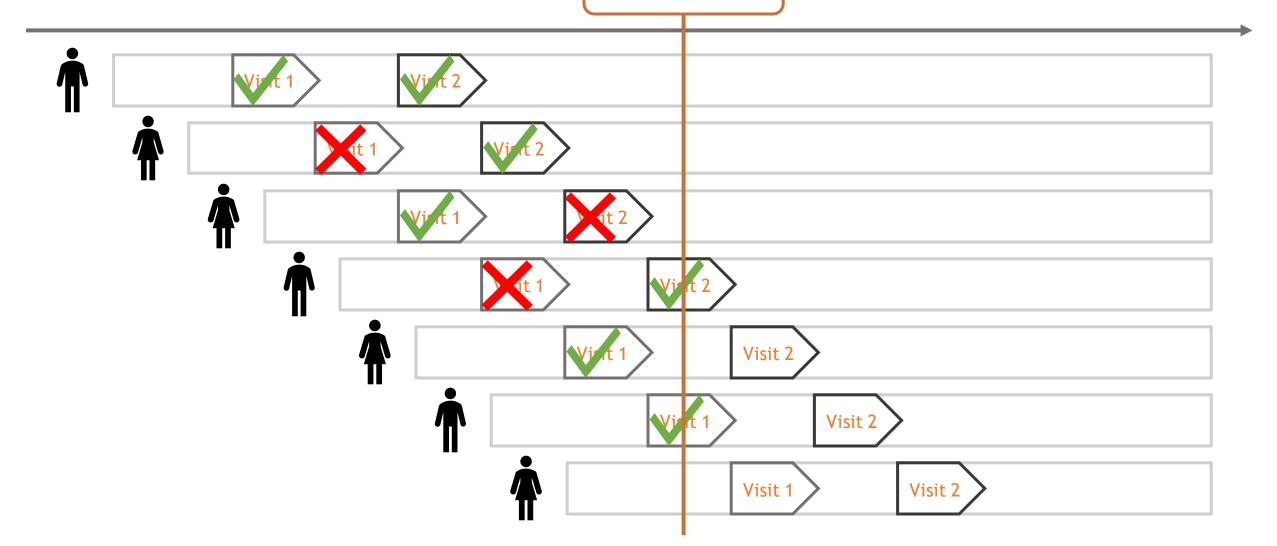
Visit 1 Visit 2

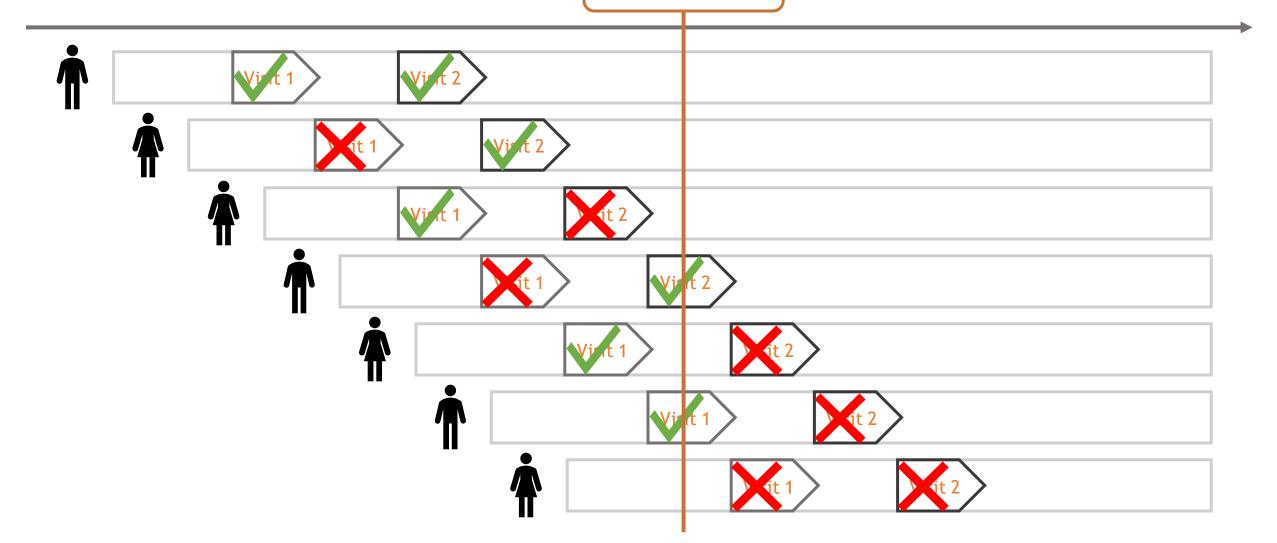














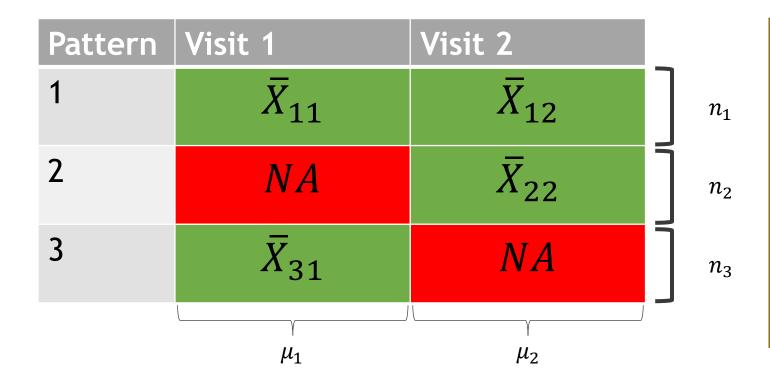
Data patterns

Pattern	Visit 1	Visit 2
1		
2		
3		
0		

Data structure

Pattern	Visit 1	Visit 2	_
1	\bar{X}_{11}	\bar{X}_{12}	
2	NA	\bar{X}_{22}	$\begin{bmatrix} \\ \\ \end{bmatrix}$ n_2
3	\bar{X}_{31}	NA	$\int_{0}^{\infty} n_3$
0	NA	NA	$\int n_0$

Data structure



$$(\bar{X}_{11}, \bar{X}_{12}) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \frac{\sigma^2}{n_1} \begin{bmatrix} 1 & \rho^2 \\ \rho^2 & 1 \end{bmatrix}\right)$$

$$\bar{X}_{22} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right)$$

$$\bar{X}_{31} \sim N\left(\mu_1, \frac{\sigma^2}{n_3}\right)$$

Data modelling

Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	$\bigcap n_1$
2	NA	\bar{X}_{22}	$\bigcap n_2$
3	\bar{X}_{31}	NA	$]$ n_3

$$(\bar{X}_{11}, \bar{X}_{12}) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \frac{\sigma^2}{n_1} \begin{bmatrix} 1 & \rho^2 \\ \rho^2 & 1 \end{bmatrix}\right)$$

$$\bar{X}_{22} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right)$$

$$\bar{X}_{31} \sim N\left(\mu_1, \frac{\sigma^2}{n_3}\right)$$

$$(\bar{X}_{11}, \bar{X}_{12}) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \frac{\sigma^2}{n_1} \begin{bmatrix} 1 & \rho^2 \\ \rho^2 & 1 \end{bmatrix}\right)$$

$$\bar{X}_{22} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right)$$

$$\bar{X}_{31} \sim N\left(\mu_1, \frac{\sigma^2}{n_3}\right)$$

$$Var(\mathbf{Y}) = \sigma^2 \begin{pmatrix} \frac{1}{N_{11}} & \frac{\rho^2}{n_1} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{\rho^2}{n_1} & \frac{1}{n_1} & 0 & 0 \\ 0 & 0 & \frac{1}{n_2} & 0 \\ 0 & 0 & \frac{1}{n_3} \end{pmatrix}$$

Data modelling

Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	$]$ n_1
2	NA	\bar{X}_{22}	n_2
3	\bar{X}_{31}	NA	$]$ n_3

$$(\bar{X}_{11}, \bar{X}_{12}) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \frac{\sigma^2}{n_1}\begin{bmatrix} 1 & \rho^2 \\ \rho^2 & 1 \end{bmatrix}\right)$$

$$\bar{X}_{22} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right)$$

$$\bar{X}_{31} \sim N\left(\mu_1, \frac{\sigma^2}{n_3}\right)$$

Parameter of interest: μ_2

$$(\bar{X}_{11}, \bar{X}_{12}) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \frac{\sigma^2}{n_1} \begin{bmatrix} 1 & \rho^2 \\ \rho^2 & 1 \end{bmatrix}\right)$$

$$\bar{X}_{22} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right)$$

$$Y = \begin{pmatrix} \bar{X}_{11} \\ \bar{X}_{12} \\ \bar{X}_{22} \\ \bar{X}_{31} \end{pmatrix} \quad E(Y) = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_1 \end{pmatrix} = D\boldsymbol{\mu} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \bar{X}_{31} \end{pmatrix}$$

$$Var(\mathbf{Y}) = \sigma^2 \begin{pmatrix} \frac{1}{n_1} & \frac{\rho^2}{n_1} & 0 & 0\\ \frac{\rho^2}{n_1} & \frac{1}{n_1} & 0 & 0\\ 0 & \frac{1}{n_2} & 0\\ 0 & 0 & \frac{1}{n_3} \end{pmatrix}$$

Variance of $\hat{\mu}_2$

Pattern	Visit 1	Visit 2		
1	\bar{X}_{11}	\bar{X}_{12}]	r
2	NA	\bar{X}_{22}]	n
3	\bar{X}_{31}	NA]	r

$$\mathbf{Y} = \begin{pmatrix} \bar{X}_{11} \\ \bar{X}_{12} \\ \bar{X}_{22} \\ \bar{X}_{31} \end{pmatrix} \quad E(\mathbf{Y}) = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_1 \end{pmatrix} = D\mathbf{\mu} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \end{pmatrix}$$

$$Var(Y) = \sigma^2 \begin{pmatrix} \frac{1}{n_1} & \frac{\rho^2}{n_1} & 0 & 0\\ \frac{\rho^2}{n_1} & \frac{1}{n_1} & 0 & 0\\ 0 & \frac{1}{n_2} & 0\\ 0 & 0 & \frac{1}{n_3} \end{pmatrix}$$

$$\hat{\mu}_2 = (0 \quad 1)(D^T Var(Y)^{-1}D)^{-1}D^T Var(Y)^{-1}Y$$

$$Var(\hat{\mu}_2) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} (D^T Var(\mathbf{Y})^{-1}D)^{-1}$$

$$Var(\hat{\mu}_2) = \frac{\sigma^2}{\underbrace{n_1(n_1 + n_2 + n_3) + n_2 n_3(1 - \rho^2)}_{n_1 + n_3(1 - \rho^2)}$$

Information of $\hat{\mu}_2$

Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	$] n_i$
2	NA	\bar{X}_{22}	$\bigcup n_i$
3	\bar{X}_{31}	NA	$\bigcap n_i$

$$\mathbf{Y} = \begin{pmatrix} \bar{X}_{11} \\ \bar{X}_{12} \\ \bar{X}_{22} \\ \bar{X}_{31} \end{pmatrix} \quad E(\mathbf{Y}) = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_1 \end{pmatrix} = D\boldsymbol{\mu} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \end{pmatrix}$$

$$Var(Y) = \sigma^{2} \begin{pmatrix} \frac{1}{n_{1}} & \frac{\rho^{2}}{n_{1}} & 0 & 0\\ \frac{\rho^{2}}{n_{1}} & \frac{1}{n_{1}} & 0\\ 0 & \frac{1}{n_{2}} & 0\\ 0 & 0 & \frac{1}{n_{3}} \end{pmatrix}$$

$$\hat{\mu}_2 = (0 \quad 1)(D^T Var(Y)^{-1}D)^{-1}D^T Var(Y)^{-1}Y$$

$$Var(\hat{\mu}_2) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} (D^T Var(Y)^{-1}D)^{-1}$$

$$Var(\hat{\mu}_2) = \frac{\sigma^2}{\frac{n_1(n_1 + n_2 + n_3) + n_2 n_3(1 - \rho^2)}{n_1 + n_3(1 - \rho^2)}}$$

$$I(\hat{\mu}_2) = \frac{\frac{n_1(n_1 + n_2 + n_3) + n_2 n_3(1 - \rho^2)}{n_1 + n_3(1 - \rho^2)}$$

$$I(\hat{\mu}_2) = \frac{\sigma^2}{\sigma^2}$$

Equivalent sample size

Complete patients only (Pattern 1):
$$I(\hat{\mu}_2) = \frac{n}{\sigma^2}$$

Partial patients:
$$I(\hat{\mu}_2) = \frac{\frac{n_1(n_1 + n_2 + n_3) + n_2n_3(1 - \rho^2)}{n_1 + n_3(1 - \rho^2)}}{\sigma^2}$$

How many complete patients are the partial patients equivalent to?

$$n \equiv \frac{n_1(n_1 + n_2 + n_3) + n_2n_3(1 - \rho^2)}{n_1 + n_3(1 - \rho^2)}$$

Timing of the interim analysis

→Based on information fraction (IF), determined by equivalent sample size

$$IF = \frac{\text{interim information}}{\text{final information}} = \frac{\frac{\text{interim equivalent sample size}}{\sigma^2}}{\frac{\text{final equivalent sample size}}{\sigma^2}} = \frac{\text{interim equivalent sample size}}{\text{final equivalent sample size}}$$

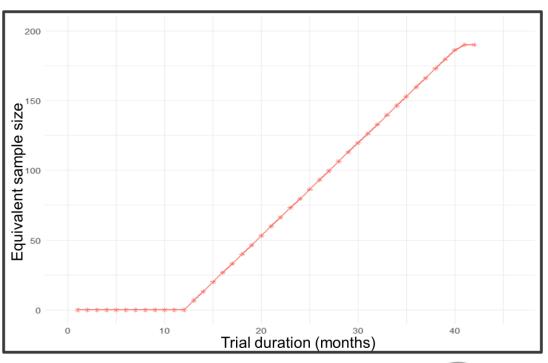
Assumptions

- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- No missing data (Pattern 1 only)

Pattern	Visit 1	Visit 2		
1	\bar{X}_{11}	\bar{X}_{12}]	γ

Assumptions

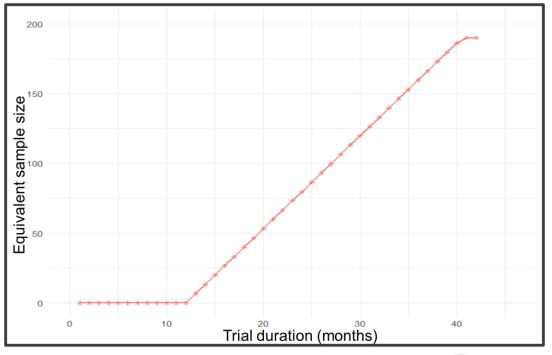
- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- No missing data (Pattern 1 only)



Assumptions

- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- No missing data (Pattern 1 only)

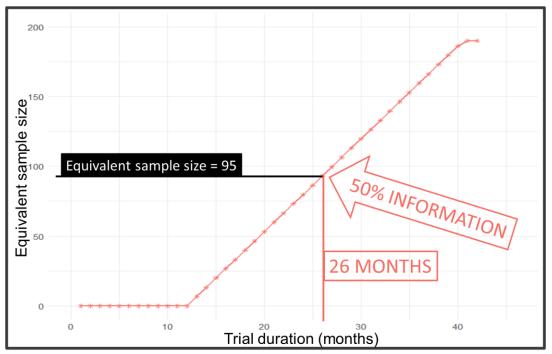
WHEN WILL WE REACH 50% OF THE FINAL INFORMATION?



Assumptions

- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- No missing data (Pattern 1 only)

WHEN WILL WE REACH 50% OF THE FINAL INFORMATION? AT 26 MONTHS



Assumptions

- Visit 1: 6 months

- Visit 2: 12 months

- Enrolment rate: 7/month

- Final equivalent sample size = 190

- Correlation between visits $\rho = 0.8$

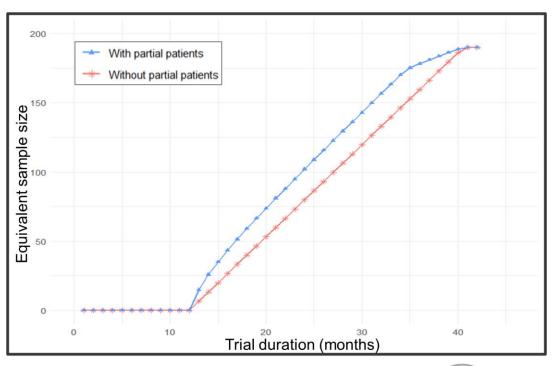
- Missing data from staggered entry and dropout (P(dropout) = 0.05)

Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	$ \;igcup_1$
3	\bar{X}_{31}	NA	$\bigcap n_3$
0	NA	NA	$\bigcap n_0$

Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	\mid] n_1
3	\bar{X}_{31}	NA	$\bigcap n_3$
0	NA	NA	$\bigcap n_0$

Assumptions

- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- Missing data from staggered entry and dropout (P(dropout) = 0.05)

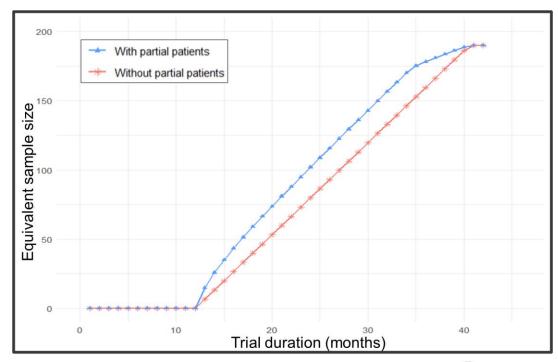


Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	$\bigcap n_1$
3	\bar{X}_{31}	NA	$\int n_3$
0	NA	NA	$\int n_0$

Assumptions

- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- Missing data from staggered entry and dropout (P(dropout) = 0.05)

WHEN WILL WE REACH 50% OF THE FINAL INFORMATION?

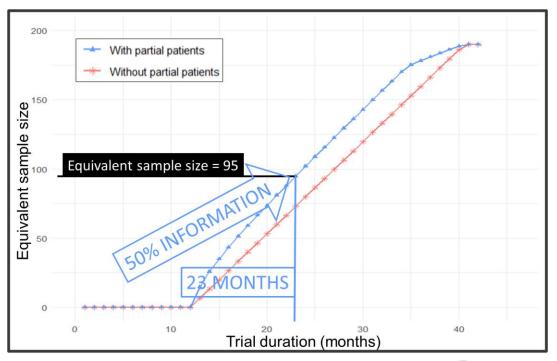


Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	$\bigcap n_1$
3	\bar{X}_{31}	NA	$\int n_3$
0	NA	NA	$\int n_0$

Assumptions

- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- Missing data from staggered entry and dropout (P(dropout) = 0.05)

WHEN WILL WE REACH 50% OF THE FINAL INFORMATION? AT 23 MONTHS

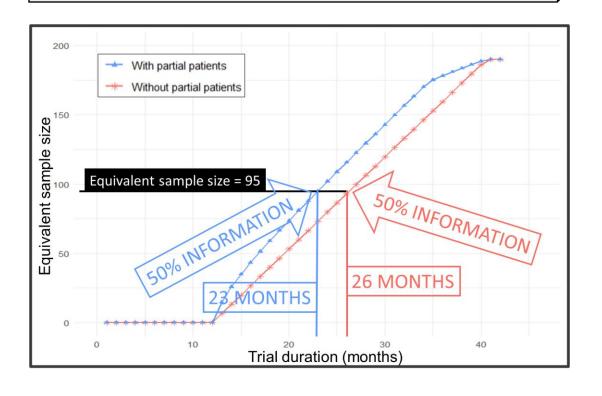


Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	$]$ n_1
3	\bar{X}_{31}	NA	$]$ n_3
0	NA	NA	$]$ n_0

Assumptions

- Visit 1: 6 months
- Visit 2: 12 months
- Enrolment rate: 7/month
- Final equivalent sample size = 190
- Correlation between visits $\rho = 0.8$
- Missing data from staggered entry and dropout (P(dropout) = 0.05)

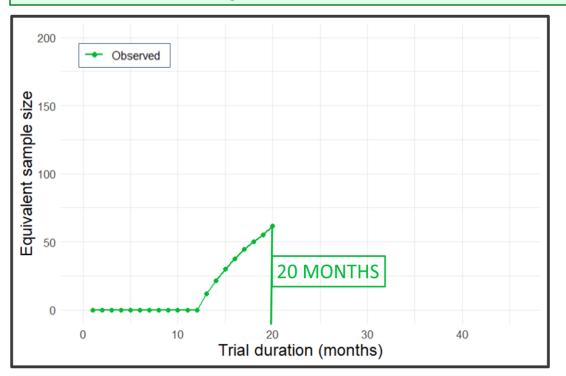
WHEN WILL WE REACH 50% OF THE FINAL INFORMATION? AT 23 MONTHS



Observations at 20 months

- Lower enrolment rate (6/month)
- Unforeseen missingness $P(miss\ Visit\ 1) = 0.11, P(miss\ Visit\ 2) = 0.02$

-
$$n_1 = 42, n_2 = 5, n_3 = 33$$

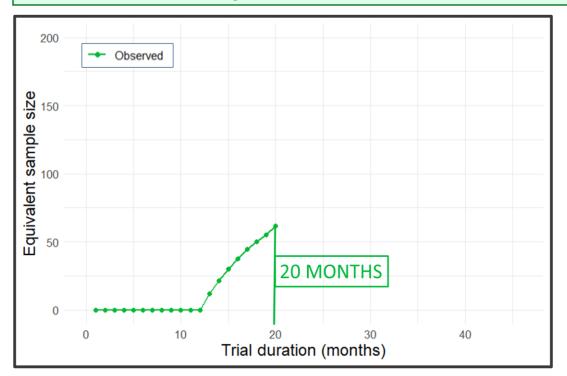


Pattern	Visit 1	Visit 2		
1	\bar{X}_{11}	\bar{X}_{12}	$\bigcap n_1$	
2	NA	\bar{X}_{22}	\bigcap_{n_2}	
3	\bar{X}_{31}	NA	$\int_{0}^{\infty} n_3$	
0	NA	NA	$\int_{0}^{\infty} n_{0}$	

Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	n_1
2	NA	\bar{X}_{22}	n_2
3	\bar{X}_{31}	NA	$\int_{3}^{3} n_3$
0	NA	NA	$\int n_0$

Observations at 20 months

- Lower enrolment rate (6/month)
- Unforeseen missingness $P(miss\ Visit\ 1) = 0.11, P(miss\ Visit\ 2) = 0.02$
- $n_1 = 42, n_2 = 5, n_3 = 33$



Assess current information level

Pattern	Visit 1	Visit 2		
1	\bar{X}_{11}	\bar{X}_{12}		n_1
2	NA	\bar{X}_{22}		n_2
3	\bar{X}_{31}	NA		n_3
0	NA	NA	[ا	n_0

Observations at 20 months

- Lower enrolment rate (6/month)
- Unforeseen missingness $P(miss\ Visit\ 1) = 0.11, P(miss\ Visit\ 2) = 0.02$
- $n_1 = 42, n_2 = 5, n_3 = 33$

Assess current information level

- → incorporate prior belief
- → obtain updated probabilities

Pattern	Visit 1	Visit 2		
1	\bar{X}_{11}	\bar{X}_{12}		n_1
2	NA	\bar{X}_{22}		n_2
3	\bar{X}_{31}	NA	آ	n_3
0	NA	NA	[ا	n_0

Observations at 20 months

- Lower enrolment rate (6/month)
- Unforeseen missingness $P(miss\ Visit\ 1) = 0.11, P(miss\ Visit\ 2) = 0.02$
- $n_1 = 42, n_2 = 5, n_3 = 33$

Assess current information level

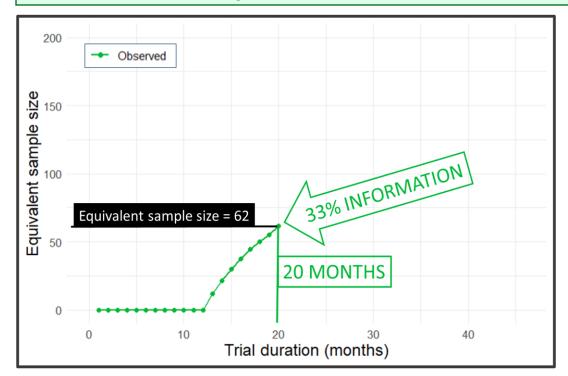
- → incorporate prior belief
- → obtain updated probabilities
- → Calculate:
- current equivalent sample size = 62
- projected final equivalent sample size = 188

2. After observing some data

Pattern	Visit 1	Visit 2	
1	\bar{X}_{11}	\bar{X}_{12}	n_1
2	NA	\bar{X}_{22}	$\overline{\ \ }$ n_2
3	\bar{X}_{31}	NA	$\int_{3}^{2} n_3$
0	NA	NA	$\int n_0$

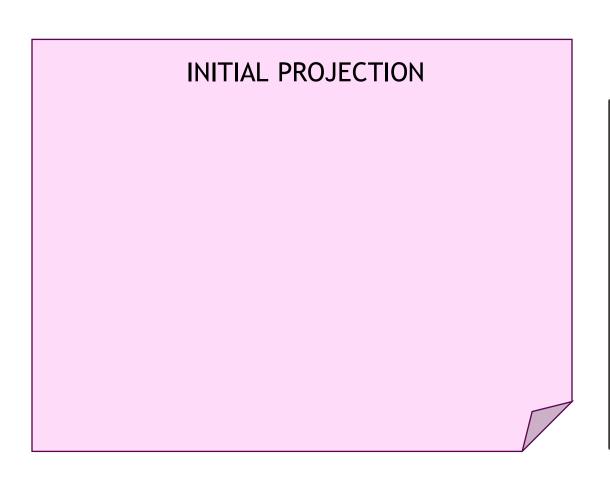
Observations at 20 months

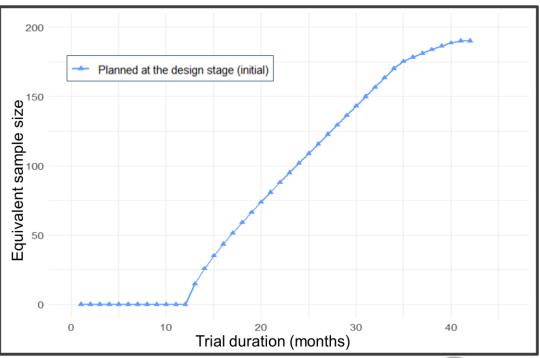
- Lower enrolment rate (6/month)
- Unforeseen missingness $P(miss\ Visit\ 1) = 0.11, P(miss\ Visit\ 2) = 0.02$
- $n_1 = 42, n_2 = 5, n_3 = 33$

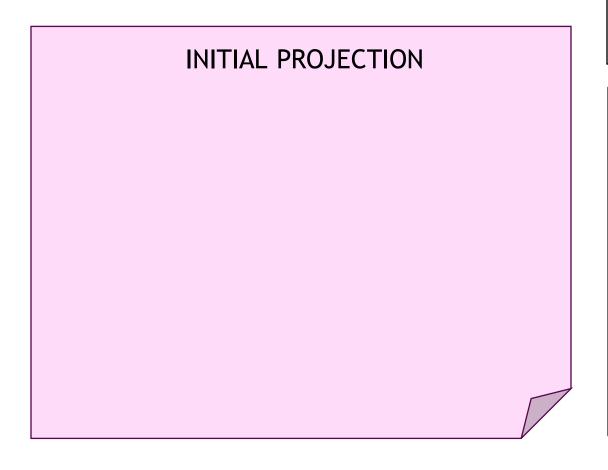


Assess current information level

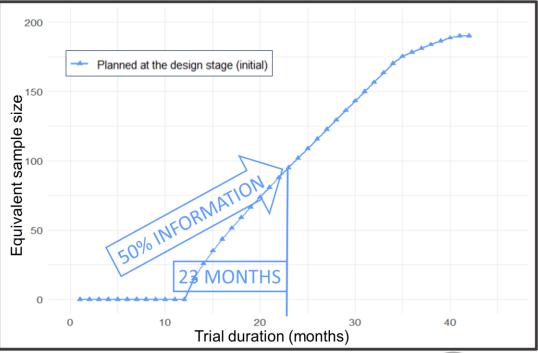
- → incorporate prior belief
- → obtain updated probabilities
- → Calculate:
- current equivalent sample size = 62
- projected final equivalent sample size = 188
- \rightarrow 62/188 = 33% information accrued

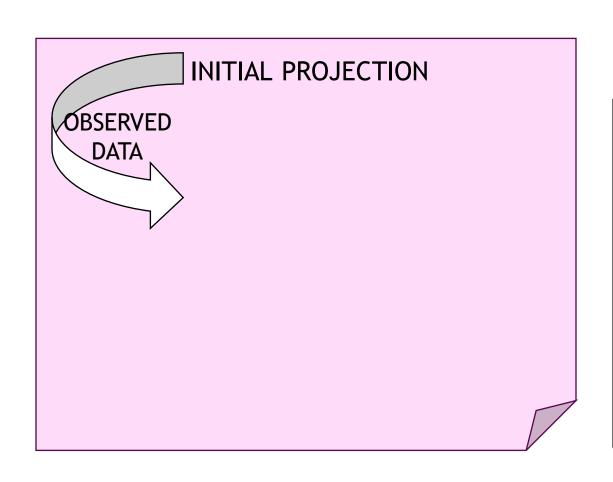


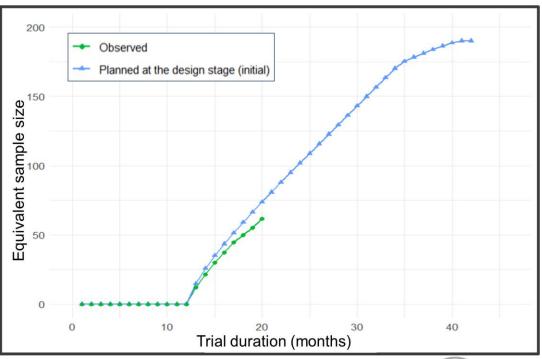


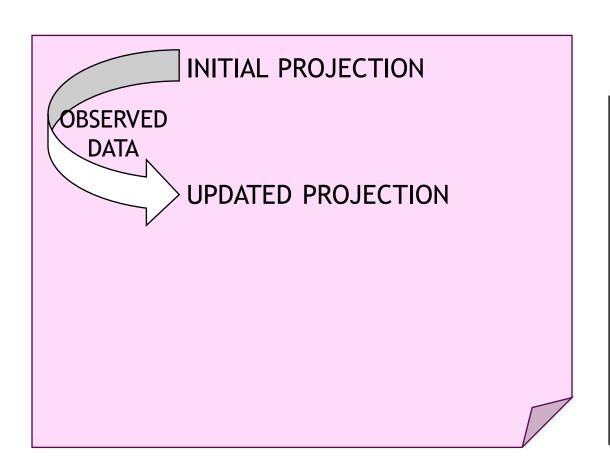


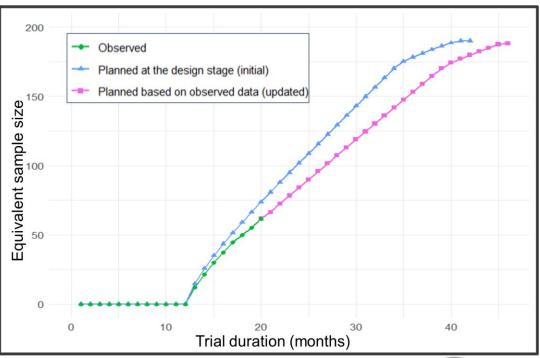
WHEN WILL WE REACH 50% OF THE FINAL INFORMATION? AT 23 MONTHS

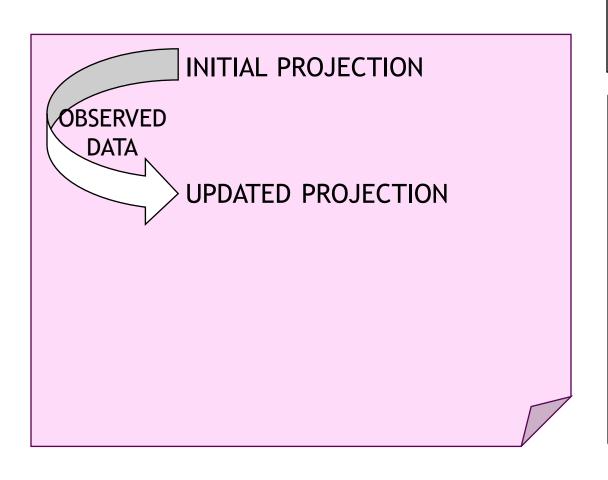




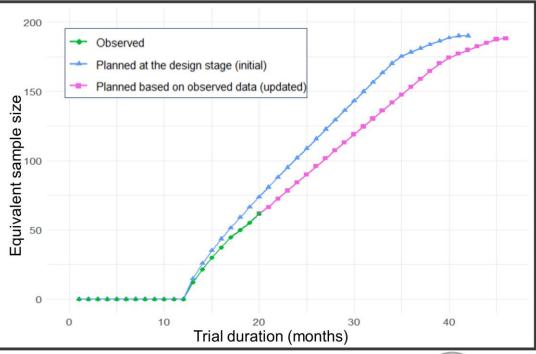


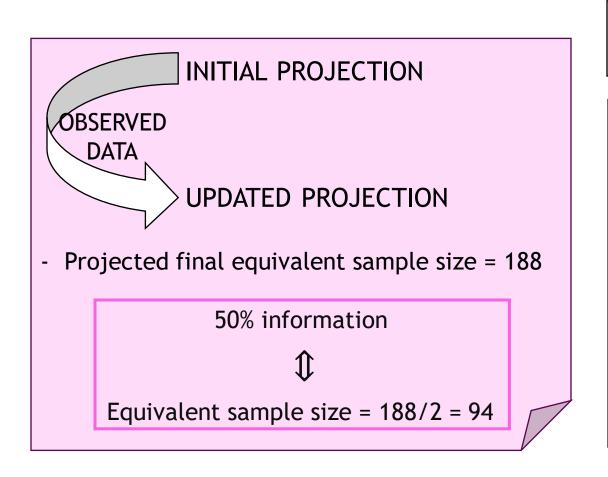




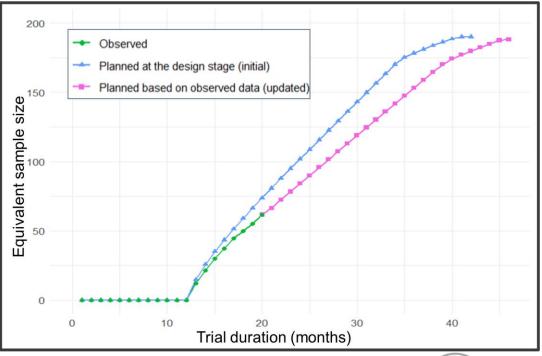


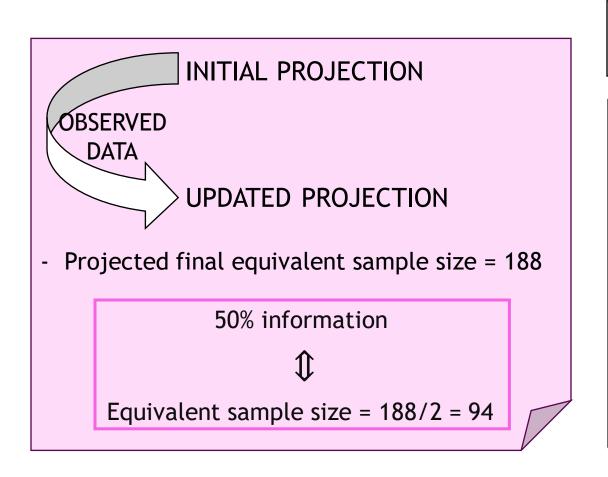
WHEN WILL WE REACH 50% OF THE FINAL INFORMATION?



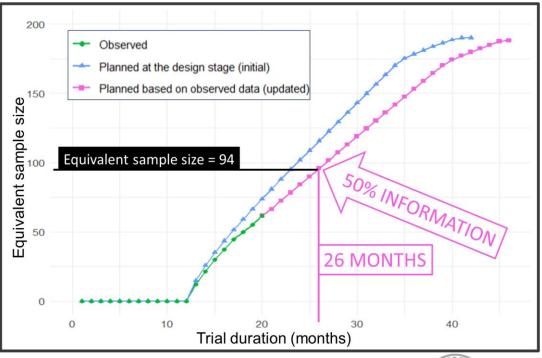


WHEN WILL WE REACH 50% OF THE FINAL INFORMATION?





WHEN WILL WE REACH 50% OF THE FINAL INFORMATION? AT 26 MONTHS



- make timeline projections based on assumptions at the design stage
- assess information level during the trial
- update timeline projections based on observed data

- make timeline projections based on assumptions at the design stage
- assess information level during the trial
- update timeline projections based on observed data

- make timeline projections based on assumptions at the design stage
- assess information level during the trial
- update timeline projections based on observed data

- make timeline projections based on assumptions at the design stage
- assess information level during the trial
- update timeline projections based on observed data

Group individuals with the same missingness patterns and apply the framework to:

- make timeline projections based on assumptions at the design stage
- assess information level during the trial
- update timeline projections based on observed data

Extensions

- more visits → approximation of equivalent sample size
- different target information level with any type of interim analysis
- different assumptions at the design stage (enrollment rate, dropout rate, etc.)
- single-patient contribution to the information level

