Empirical benchmarking of two recent approaches for augmenting clinical trials via external data PSI 2024, Amsterdam

Erik Hermansson ¹ Fredrik Öhrn ³ Stefan Franzén ² David Svensson ¹

 $^1\mathrm{Respiratory}\ \&\ \mathrm{Immunology}\ \&\ \mathrm{Statistical}\ \mathrm{Innovation},\ \mathrm{AstraZeneca},\ \mathrm{Gothenburg},\ \mathrm{Sweden}$

²Medical & Payer Evidence Statistics, AstraZeneca, Gothenburg, Sweden

³Statistics and Decision Sciences, Global Development, Johnson and Johnson Innovative Medicines, Gothenburg, Sweden

June 4, 2024

Outline

- Introduction
- Methodology
- Simulation Model
- 4 Large Scale Simulation benchmarking
- 5 Discussion & Conclusion

Introduction

Bayesian and Frequentist methods

► Two potential ways to do this is Bayesian Dynamic Borrowing (BDB) [1, 6, 8] and Prognostic Score Methodology (PSM) [2, 9], but many more available [8]

Increased acceptance by regulatory agencies

▶ BDB have been approved by the FDA in some settings where recruitment is difficult and PSM recently went through the process of an EMA qualified opinion [5]

Setting: Phase 2B with mostly sponsors risk

- One historical trial to borrow from
- ▶ We borrow only the control arm and have a continuous endpoint

Robust Mixture Prior

- Many different ways to do Bayesian dynamic borrowing, such as power prior and hierarchical prior [8]. We will focus on Robust Mixture prior (RMP)
 - RMP borrows dynamically via a likelihood weighting. If there is a large prior data conflict the informative prior wont influence the posterior as much [1, 6]
 - ► The borrowing can be expressed as Effective Sample Size (ESS) [4] and can be seen as *expected* additional enrolled control patients
 - ► However, BDB can *potentially* inflate the Type 1 Error and have a lower power.

• How to select W?

▶ We choose the weight such that the prior contribute by no more than 50% of the future control arm measured with ESS

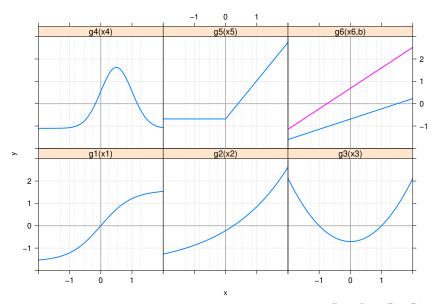
Prognostic Score Methodology

- With relevant historical data one can build a prediction model of the future control response [2, 9] which reduces the residual variance in proportion to the R² of the model (and protects the Type 1 Error!)
 - ► This can then be written as an ANCOVA such as $E[Y_k] = \alpha + \delta T_k + \beta^t x_k + \gamma \hat{z}^{(RCT)}$
 - ► NOTE: For PSM to add value it need to improve the R² above what an ANCOVA would have
- Many different models can be used
 - ► To improve upon an ANCOVA it probably needs to be able to detect potential non-linearity in the data
 - ▶ We have opted for XGBoost as it performs well on tabular data [3]

Dynamic Twins - A natural conclusion?

- We can combine the two methods by borrowing the control effect after adjusting with PSM. A similar approach have been suggested by Vanderbeek et al [7]
 - ▶ The adjusted control response is the intercept from a linear regression where centered covariates have been included i.e. $Y = \alpha + \beta(X \bar{X})$ and then $\mathbf{E}[Y] = \alpha$
- This potentially increases the power by reducing the residual variance and by increasing the effective sample size [4]
 - ► However, we can now have a misspecification of the prognostic model and the future control response!

Simulation Model

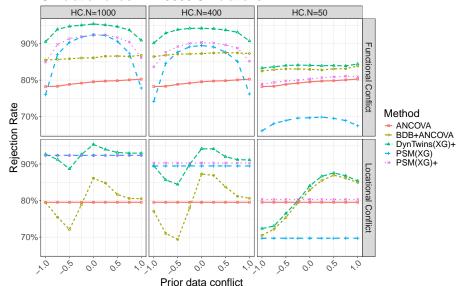


Simulation set up

- The historical control arm is seen as fixed and the future RCT is simulated from $y = \delta \cdot T + f_{prog}(\mathbf{x}, b; \mathbf{W}, \mathbf{w}, \mu) + \varepsilon$
 - ▶ Three different historical sample sizes, 50, 400 and 1000
 - ▶ The future study has 400 patients and have a 1:1 randomization
- Two different types of prior data conflict
 - By varying μ between -1 and 1, we can create prior data conflict. We call it Locational Conflict.
 - \blacktriangleright W^2 is altered between 0 and 2. This is to alter the functional relationship of the future data and is called Functional Conflict.

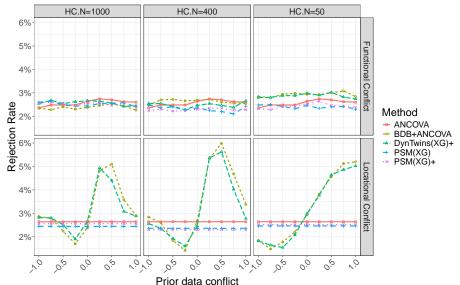
Alternative Hypothesis

Simulation under H1. 5000 Simulations



Null Hypothesis

Simulation under H0. 5000 Simulations



Discussion & Conclusion

- Both methods are vulnerable to data conflicts, although in different ways.
 - ▶ BDB can have higher type 1 error and lower power
 - While the downside in PSM is limited as the cost is one degree of freedom
 - BDB can be done with only summary level data while PSM requires individual level patient data
- The methods work in different ways to arrive at the same goal higher power/reduced sample size
 - ▶ NB: BDB borrows in absolute numbers while PSM borrows in proportion to the future trial
- When little data is available, PSM does not add much value while BDB can still give meaningful gains.
- One can combine the two methods, but is sensitivity to Locational and Functional Conflict

References I

- [1] Nicky Best et al. "Assessing efficacy in important subgroup in confirmatory trials: An example using Bayesian dynamic borrowing". In: (2021).
- [2] Carl-Fredrik Burman et al. "Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data". In: *Pharmaceutical Statistics* n/a (2024), pp. 1–19.
- [3] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on tabular data? 2022.
- [4] Beat Neuenschwander et al. "Predictively consistent prior effective sample sizes". In: *Biometrics* 76.2 (2020), pp. 578–587.
- [5] "Qualification opinion for Prognostic Covariate Adjustment (PROCOVA™)". In: (2022).

References II

- [6] Heinz Schmidli et al. "Robust meta-analytic-predictive priors in clinical trials with historical control information". In: *Biometrics* 70.4 (2014).
- [7] Alyssa M. Vanderbeek et al. Bayesian Prognostic Covariate Adjustment With Additive Mixture Priors. 2024.
- [8] Kert Viele et al. "Use of historical control data for assessing treatment effects in clinical trials". In: *Pharm Stat* 13 (2014), pp. 41–54.
- [9] David Walsh et al. "Using digital twins to reduce sample sizes while maintaining power and statistical accuracy". In: Alzheimer's & Dementia 17.S9 (2021), e054657.

Simulation Model

The historical and future control arms are simulated from $y = f_{prog}(\mathbf{x}, b; \mathbf{w}, \mu) + \varepsilon$ where

$$f_{prog}(\mathbf{x}, b; \mathbf{w}, \mu) = \mu + w_1 \cdot g_1(x_1) + w_2 \cdot g_2(x_2) + w_3 \cdot g_3(x_3) + w_4 \cdot g_4(x_4) + w_5 \cdot g_5(x_5) + w_6 \cdot g_6(x_6, b)$$
(1)

with $\varepsilon \sim N(0,\sigma)$, where $\sigma^2=4$ and $\sum_{j=1}^6 w_j^2=6$. The historical data is kept fixed and where the configuration $\mathbb{W}=1$, $\mathbb{W}=1$ and $\mu=0$ represents exchangability of the historical and future data. The future RCT is simulated from the following model:

$$y = \delta \cdot T + f_{prog}(\mathbf{x}, b; \mathbf{W}, \mathbf{w}, \mu_1) + \varepsilon, \tag{2}$$

Learner Comparison

HC.N	Method	Prior Mean R2	Post Mean R2	Drift in R2
HC.N=1000	PSM(LR)	0.33	0.32	0.01
HC.N=1000	PSM(RF)	0.45	0.43	0.02
HC.N=1000	PSM(XG)	0.55	0.54	0.01
HC.N=400	PSM(LR)	0.33	0.31	0.02
HC.N=400	PSM(RF)	0.39	0.38	0.01
HC.N=400	PSM(XG)	0.50	0.49	0.01
HC.N=50	PSM(LR)	0.40	0.25	0.15
HC.N=50	PSM(RF)	0.15	0.18	-0.03
HC.N=50	PSM(XG)	0.26	0.13	0.12

Table: 5000 simulations of the mean R^2 based on in sample predictions and out of sample predictions for different learners and different amount of historical data.

Functional Conflict

