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The presentation will omit details; please check the paper!



Gaining power from historical data

Background: Randomised clinical trial (RCT) comparing Active
vs Control. Standard linear normal model for response y .
Covariates x = {x1, x2, . . .}.

Two very different approaches to learn from Historical Controls
(HC) data in order to gain efficiency for an upcoming RCT.

▶ Digital Twins (DT)
▶ Machine Learning on HC
▶ Find best predictor, z(x).
▶ Use z in the ANCOVA for the RCT

▶ Bayesian Dynamic Borrowing (BDB)
▶ Borrowing: Use historical controls as controls in the RCT
▶ Bayesian: Don’t trust HCs completely
▶ Dynamic: Let data tell you how much HCs can be trusted



Main focus on:

Bayesian Dynamic Borrowing



BDB: We want to estimate RCT treatment difference, δ

Figure: δ is mean treatment effect vs control in RCT



We think HC are similar to Trial Controls (TC)

Figure: ∆ is mean difference TC vs HC



Borrowing

Depending on the specific situation, historical controls can be
expected to be more or less similar to trial controls. If we knew
that HC and TC were essentially drawn from the same sample, we
could just pool all controls and compare to patients on Active in
the RCT. However, mean responses for controls could be different
in historical and trial data.



Risk of bias if we compare RCT Active with HCs

Figure: Bias ∆



For now, assume same sample size, residual variance

Figure: Sample size is n in each of the three groups. Same residual
variance S2. Sample variance per group: σ2 = S2/n.
Var [∆̂] = Var [θ̂ − θ̂HC ] = 2σ2.



Bayesian Dynamic Borrowing: A simple variant

Optimistic scenario (No difference):
There is no difference in means for TC and HC, ∆ = 0.

Pessimistic scenario (vague prior):
We take ”large” prior variance, ∆ ∼ N(0, τ2∆) where τ

2
∆ ≫ σ2.

Compromise (dynamic prior):
Prior weight w = 0.5 on both optimistic and pessimistic scenario.



Bayesian updating, given estimated difference ∆̂

Optimistic scenario (No difference):
There is no difference in means for TC and HC, ∆ = 0.
Prior is certain that ∆ = 0. Data cannot change this. Posterior
also has ∆ = 0 with probability 1.
HC and TC are pooled.

Pessimistic scenario (vague prior):
We take ”large” prior variance, ∆ ∼ N(0, τ2∆) where τ

2
∆ ≫ 2σ2.

Information in data overwhelms the info in the prior. The posterior
for ∆ is therefore approximately N(∆̂, 2σ2).
HC are essentially disregarded.

Compromise (dynamic prior):
Prior weight w = 0.5 on both optimistic and pessimistic scenario.
We’ll see later how the weight is updated.



Mixture prior for θ based on HC estimate θ̂HC

Optimistic scenario (informative prior component):
There is no difference in means for TC and HC, ∆ = 0.
Leads to prior for θ given θ̂HC : π0(θ) = N(θ̂HC , σ

2)

Pessimistic scenario (vague prior component):
We take the prior information equal to the information for one
single observation.
Prior for θ: π1(θ) = N(θ̂HC ,S

2)

Compromise (dynamic prior):
Prior weight wi = 0.5 on both optimistic and pessimistic scenario.

Prior: w0 · φ
(
θ−θ̂HC

S

)
+ w1 · φ

(
θ−θ̂HC

σ

)



Updating normal priors

Normal priors are updated with normal data in a . . . normal way.

If only one normal prior:

▶ Assume prior for θ: N(0, τ2). Data: estimate θ̂ is N(θ, ν2).

▶ Define prior information I = 1/τ2 and information in data
J = 1/ν2.

▶ Prior mean and data estimate are simply weighted according
to info. Posterior information is sum of prior info and data

info. Thus, posterior is N
(
I·0+J ·∆̂

I+J , 1
I+J

)



Updating the mixture prior for θ given TC data, θ̂

Relax the assumption of equal sizes; let HC sample size be k times
TC size, n⋆ = k · n. Still, σ = S2/n is TC variance.

Informative prior component (pool HC and TC)
Prior: π0(θ) = N(θ̂HC , σ

2)

Posterior: N
(
( k
k+1 θ̂HC + 1

k+1 θ̂),
σ2

k+1

)
Vague prior component
Prior: π1(θ) = N(θ̂HC ,S

2)

Posterior: N
(
( 1
n+1 θ̂HC + n

n+1 θ̂),
n

n+1σ
2
)

Posterior weight The posterior weight ought to reflect whether
HC are consistent with TC.
Let s2i = Var [πi (θ)] + σ2 be the predictive prior variance.
Posterior weights for informative/vague components are

proportional to φ
(
θ̂−θ̂HC

si

)



Example of posterior weight

-4 -2 2 4
Observed (SE units)

0.2

0.4

0.6

0.8

1.0

Posterior weight for informative component

Figure: Weight for the informative component, as function of ∆̂/SE [∆̂].
Solid blue curve has n⋆ = n = 200. The dotted black curve results when the

vague prior has ten times larger standard deviation. Finally, the red dashed curve use

the same model as the blue but with n∗ = ∞.



Posterior weight is pretty random!
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Figure: Probability density for posterior weight when RCT control mean
is 3 standard error units away from HC average.



We cannot solve the problem statistically

We don’t know if HCs are perfect or useless.
We only get one estimate of HC vs RCT difference.
This randomly tells us what to think. NOT GOOD!

If we have very good power, we don’t need BDB
If we have low/moderate power, then ∆̂ will automatically be
uncertain in any situation we’d be interested in.

Conclusion: We need extra-statistical information. Real clinical
insight and common sense, not a mathematical black box!



Very large Type 1 Error inflation
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Figure: Conditional Type 1 Error given both the average (Active and
Control) observed RCT response, ψ̂, and the observed Historical Control
average, θ̄. Variables are scaled so that the standard error of ψ̂ is one.
The dotted curve indicate the shape (scaled to fit the figure) of the
normal density for ψ̂ if ψ = 2.



What (not) to condition on

Standard (frequentist) inference theory:

▶ You should condition on nuisance parameters! (”Nuisance”

parameters do not tell us anything about the relative treatment effect, in the

model we have.)

In the analysis of a standard non-complex RCT, this means e.g.

▶ Take the sample sizes for each arm as fixed (although total sample

size is random due to when recruitment stops, split depends on randomization).

▶ In survival analysis, take the total number of events as fixed
together with inclusion times.

▶ In normal model, take response of all RCT patients as fixed.

BDB uses a ”larger” model. Conditioning is less obvious!



Conditional T1E revisited

Different (conditional) Type 1 Errors may be relevant for different
scenarios.
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Conditional Type 1 Error Scenarios:

1. Look at blinded RCT
data, then choose
HCs

2. Estimate HC average,
then run RCT.

3. Blind both HC and
RCT data.



Real Bayesian instead of black box

What do we (experts) believe? (RCT vs RCT in same centers with
same sponsor; RCT vs RCT with other sponsor; RCT vs Register
data)
Compare covariate distributions.
Often better responses over time? Often better responses in RCT?
Prior with non-zero mean drift. Prior for between-trial variability τ .



Digital Twins



DT simulation set-up
y(x, µ) = µ+g1(x1)+g2(x2)+g3(x3)+g4(x4)+g5(x5)+g6(x6, b)+ε

where xj ∼ N(0, 1) independent

x

y
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Var(y) =
6∑

j=1

Var(gj(x)) + Var(ε) = 6 · 1 + 4 = 10.



Variance explained by Random Forest or Linear Model

Variance explained
Variance LM R50 RF200 RF1000

Total 10 3.21 1.91 3.49 4.56
Logistic g1(x1) 1 0.93 0.56 0.72 0.75
Exponential g2(x2) 1 0.88 0.48 0.65 0.75
Quadratic g3(x3) 1 0.00 0.19 0.37 0.55
Bell g4(x4) 1 0.20 0.28 0.48 0.68
Trend change g5(x5) 1 0.73 0.48 0.68 0.78
Interaction g6(x6, b) 1 0.47 0.20 0.30 0.36
Residual ε 4

Table: Variance / variance explained, in total and separately for the six
model components. For Random Forest, n∗ = 50, 200, 1000. The values

presented for each variable xj are a difference between the overall MSE and the MSE

resulting if deleting the variable xj from the data set, and then re-fitting the model.

May not add to total!



DT simulation results
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Figure: Power for ANCOVA models with 0, 6 or 7 baseline covariates
(green); similar models complemented by an RF-trained predictor, based
on n∗ = 50 (yellow), n∗ = 200 (orange) or n∗ = 1000 (dark red); or
complemented by a linear predictor (n∗ = 50, blue) based on historical
data.



DT discussion

▶ Learn predictor from HC

▶ Include in ANCOVA

▶ Potential gain, almost no statistical cost

▶ How large non-linearities in real applications? Need more
practical examples.

▶ Learn from HC! But perhaps enough to add simple covariates?

▶ Digital Twins and Bayesian Dynamic Borrowing use historical
control data in very different ways


