Background

- Clinicians require simple rule such as cutpoint for classification of patients based on their prognosis. Determining such a cutpoint for a single predictor (primary variable) could be challenging if other predictors are accounted for.
- Aim: to define a cutpoint for patient’s Membranous Urethral Length (MUL) - primary variable - such that for patients with MUL above the cutpoint, the probability of regaining continence 6 months after prostate surgery is > 90% taking into account other variables (in this study, patients’ age)

Problem statement:
- There is a primary variable (patient’s MUL), a binary outcome (continence), and one (or more) secondary variable (age).
- There is a positive correlation between the primary variable and the binary outcome
- To seek a cutpoint for the primary variable, such that the probability of the binary outcome (continence) is above a particular threshold (here 90%)

Methods

Patients:
- 190 patients with localised prostate cancer who underwent robot-assisted robotic prostatectomy (RARP) were retrospectively reviewed.
- Continence was defined as no pad or a safety pad.

Probabilistic framework:
- Considering the vector of all variables \(x\), decomposed into the primary \(x_i\) and the secondary \(x_{i-1}\) parts, \(x = [x_i, x_{i-1}]\). We can think of two entities:

1. \(P(y = 1|x) = P(y = 1|x_i, x_{i-1})\): A binary classification model that predicts the binary outcome, conditioned on the variable

2. \(P_c(x) = \begin{cases} \alpha P(x) & \text{if } x_i \geq c \\ 0 & \text{otherwise} \end{cases}\): **Truncated Joint Density Distribution**

for all variables, where \(\alpha\) is a constant and \(c\) is cutpoint. \(\alpha\) is:

\[
\int P_c(x)dx = 1 = \alpha \int_{x_i \geq c} P(x)dx \rightarrow \alpha = \frac{1}{\int_{x_i \geq c} P(x)dx}
\]

- Expectation of \(P(y = 1|x)\) with respect to \(P_c(x)\) is:

\[
f(c) \equiv E_{P_c(x)}[P(y = 1|x)] = \int P_c(x)P(y = 1|x)dx
\]

\[
= \left\{ \int_{x_i \geq c} P(x)P(y=1|x) \ dx \right\} / \int_{x_i \geq c} P(x)dx
\]

- To find the right cutpoint, we set the above to the threshold probability (continence), \(P_0\), and solve for cutpoint, \(c\)

\[
c_{optimal} = f^{-1}(P_0)
\]

Results & Conclusions

- All the scripts were written in R
- Bootstrap samples: 2000 samples were generated from the original data. For each bootstrap sample:
 1. **Conditional Density**: Logistic regression generated the conditional density of response
 2. **Joint Density**: Mean vector and covariance matrix of features (age & MUL) calculated.
 - Using mean and covariance, 100,000 Monte Carlo (MC) samples generated from a multivariate normal density.
 3. **Calculation of Expected Response**: Predicted response probability was calculated for each MC generated above.
 4. For each cutpoint selected from a grid of values:
 - Mean predicted response probability was calculated for all points where MUL was below the selected cutpoint.
 - For each bootstrap sample, the optimal cutpoint was selected as the smallest cutpoint where the mean predicted response is above the desired threshold (90% chance of gaining continence).
 - The above resulted in a distribution of cutpoints whose median, 0.025% and 97.5% percentiles were chosen to correspond to point estimate and 95% Confidence Intervals, respectively

Flexibilities arising from the probabilistic framework
- A priori assumption about expected joint density distribution (e.g., obtaining covariance matrix from a larger population) can be used
- Valid prediction can be used in the absence of information related to secondary covariates

Application of the method to clinical data showed with 95% confidence that above MUL cutpoint of 18.7mm, 90% of patients regain continence in 6 months cross all ages (Figure 1)

Figure 1: Probability of Incontinence (with 95% CIs) by MUL length cross all ages