Imperial College London

Lessons to learn from the reporting of adverse events (AEs) in randomised controlled trials: a systematic review of published reports in four high impact journals

Rachel Phillips¹, Lorna Hazell², Odile Sauzet³ and Victoria Cornelius¹

¹School of Public Health, Imperial College London, ²Drug Safety Research Unit, and ³ Bielefeld School of Public Health, University Bielefeld.

INTRODUCTION

Reporting practices for adverse events (AEs) in randomised controlled trials (RCTs) are inadequate ^(1,2). We undertook a systematic review to ascertain **best practice** for the collection, reporting and analysis of AEs in RCTs.

METHODS

We included:

- reports of original RCTs;
- where the intervention was a pharmacological product;
- published in the Lancet, the BMJ, the NEJM and JAMA;
- between September 2015 and September 2016.

RESULTS

SECTION	DATA ITEM	N=184	
Collection		n	%
	Method of AE collection		
	Passive collection	114	62.0
	Prompted collection	53	28.8
	Active screening methods		
	Clinical examinations	153	83.2
	Laboratory tests	146	79.4
	Timing of prompted collection specified (n=53)	48	90.6
	Timing of active collection specified (n=166)	95	57.2
Planned a	nalysis		
	Analysis for AEs specified in the methods section	57	31.0
	Population for AE analysis specified	82	44.6
	Planned interim analysis with stopping criteria for safety	5	2.7
Selection	for reporting		
	Subset of AEs reported	164	89.0
	Criteria used ¹		
	Frequency threshold	48	26.1
	Severity threshold	17	9.2
	Serious events	42	22.8
	Related to treatment	15	8.2

presented are not mutually exclusive.

¹Full list of criteria use not presented. Papers typically used multiple criteria so groups

Table 1: Summary of collection, assessment and analysis methods

How AEs are 'selected' for inclusion in the article was inconsistent and unclear:

- > 89% reported a subset of all AEs recorded.
- > 3% of studies did not specify what selection criteria was use.

AEs that cause patients to **withdraw** can be useful indicators of **severity** and **impact** to patients:

- > 80% of studies reported numbers that withdrew from the trial.
- > 35% of these reported whether the withdrawals were due to AEs.

DATA ITEM		N=184	
	n	%	
Withdrawals reported		79.4	
Withdrawals due to AEs reported (n=146)		34.9	
Specific AEs causing withdrawals reported (n=51)		23.5	
Binary outcomes			
Binary AE outcomes summarised by arm			
Not summarised	6	3.3	
Number of people with an event	154	83.7	
Number of events	11	6.0	
Both	12	6.5	
Unclear	1	0.5	
Frequencies of AEs reported by arm		94.1	
Percentages of AEs reported by arm		87.0	
Between arm differences & 95% CI of AEs reported		20.1	
Statistical significance tests between arms on AEs reported	86	46.8	
Continuous outcomes			
Continuous AEs outcomes dichotomised for summaries		72.9	
Continuous ALS outcomes dichotomised for summanes	136	12.3	
If continuous outcomes were left as continuous what between arn	n analy	/ses	
was performed? (n=38)			
Differences in measures of central tendency estimated with 95% CI	15	39.4	
Between arm hypothesis tests performed	26	68.5	
Graphical presentations of AE outcomes	22	12.0	
Summaries of severity rating of AEs reported		41.3	
Number of serious AEs reported		72.8	
Duration of any AEs reported		4.9	
Time of occurrence of any AEs reported	52	28.3	
Multiplicity of events accounted for by significance tests	3	1.6	

Table 2: Summary of analysis performed and results presented

Reporting numbers that experience at least one event and **ignoring repeated events** masks valuable information that may be **important to patients**:

➤ 84% of studies provided no information on the number of events occurring.

RCTs are typically **underpowered** to detect important differences in AEs between arms:

➤ 47% performed formal hypothesis tests for binary outcomes.

Graphs are an efficient method to **convey** and **interpret** large amounts of data and can make it easier to flag potential safety signals:

> 12% of studies used graphs to present AE data.

CONCLUSION

This review has demonstrated that even in best practice the **collection**, **reporting** and **analysis** of AE data in clinical trials is sub-optimal.

Areas to improve include:

- Reducing information loss when analysing at patient level;
- Stopping the inappropriate practice of underpowered multiple hypothesis testing;
- Development of better statistical methods for AE analysis.

Rachel Phillips is funded by the National Institute for Health Research (NIHR) Doctoral Research Fellowship programme to undertake this work. This is a summary of independent research and the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.