Exploring re-randomisation tests in an Quanticate equivalence trial

Holly Prescott, Marsha Kabeleva and Niccolo' Bassani

Introduction

- Randomisation forms the foundation for validity of all statistical tests conducted in the trial. This is particularly true in trials where stratification factors need to be accounted for.
- As an alternative to 'static' methods, dynamic randomisation methods 'create' the list as the patients are enrolled, using an algorithm to balance weight of stratification.
- Regulators are concerned type I error control might not always be achieved through dynamic randomisation, hence they advise on using re-randomisation methods [1]
- Whilst the above test is particularly well suited for superiority trials, can it be used within an equivalence trial?

Methodology

- In a superiority trial, under the null hypothesis of no difference, treatment labels are randomly re-shuffled across patients and the test statistic estimated for each re-shuffled dataset.
- The number of re-shuffled statistics which is more extreme then the 'original' one is the re-randomisation p-value. The higher (e.g. >0.05), the less robust is the original finding

Table 1. Re-randomisation test framework

	Superiority	Equivalence	
Null Hypothesis	$H_0: \mu_T - \mu_R = 0$	$H_{01}: \mu_T - \mu_R \ge \delta^U \cup H_{02}: \mu_T - \mu_R \le \delta^L$	
Alternative Hypothesis	$H_1: \mu_T - \mu_R \neq 0$	$H_{11}: \mu_{T} - \mu_{R} < \delta^{U} \cap H_{12}: \mu_{T} - \mu_{R} > \delta^{L}$	

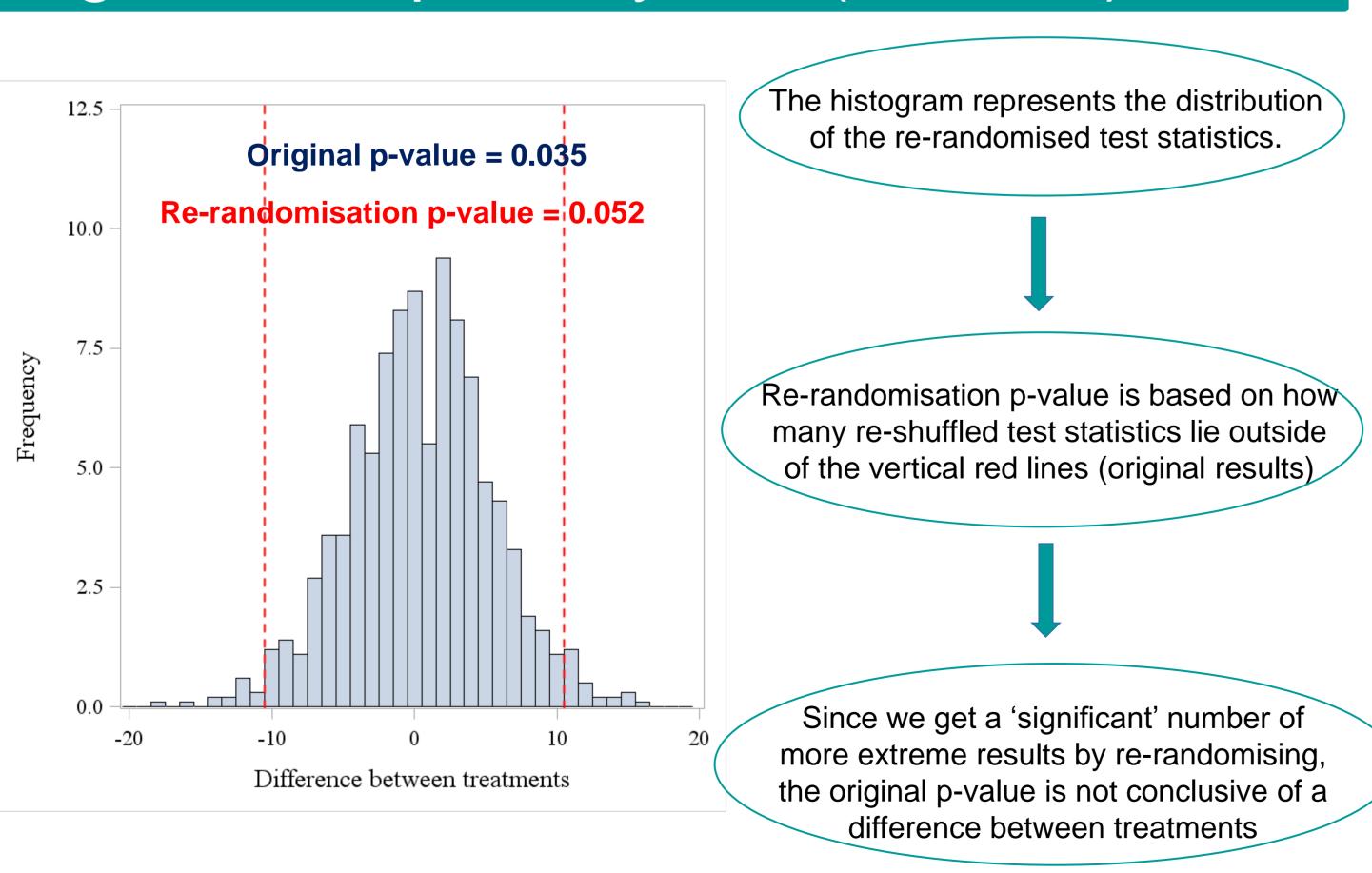
Re-randomise...

Re-randomisation test

$$\frac{\#\left(T^*>T\right)}{N} \qquad \frac{\#D^*>\left(\delta^U+D\right)/N}{\#D^*>\left(\delta^L+D\right)/N}$$

NOTE: T(D) is the value of test statistic (difference between treatments)) on the original dataset, $T^*(D^*)$ is the value over the re-shuffled datasets. δ^U and δ^L are, respectively, the upper and lower margin of the equivalence margin.

Figure 1. Superiority trial (N = 200)



How about equivalence?

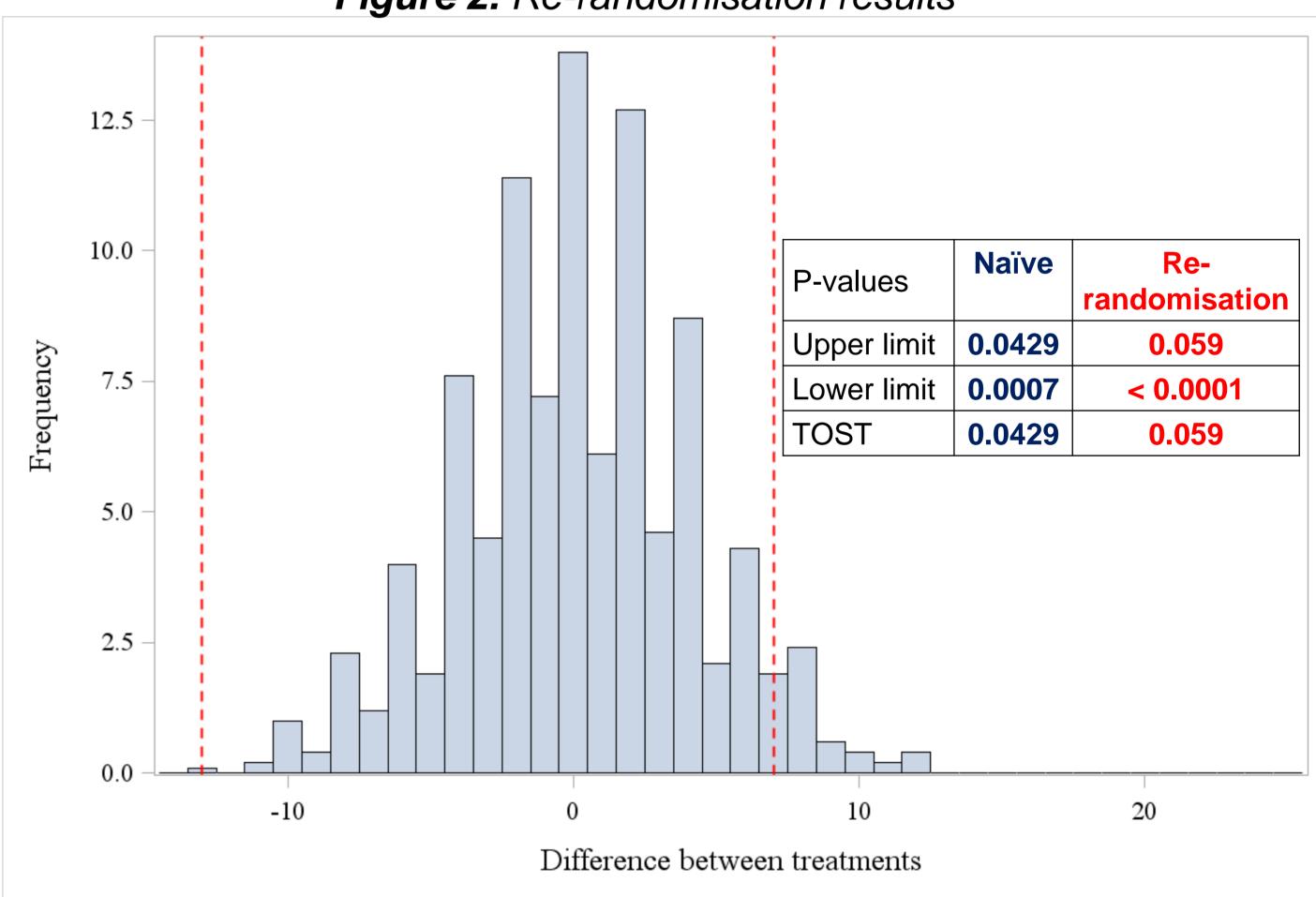
- Thinking is reversed: the null hypothesis of no difference becomes the alternative, so that re-shuffling is done under the alternative, rather than the null.
- Thus the primary goal of re-randomisation wouldn't apply here, in that we'd be 'testing' the system under the alternative.
- The framework illustrated in Table 1 might still be used, its results actually being thought more as a 'back-up' to the original study

Table 2. Simulation results - TOST

	Proportion of Responders		Difference	000/ 01
	Treatment A	Treatment B	Difference	90% CI
True	0.5	0.6	0.1	_
Simulated*	0.51	0.54	-0.03	-0.097, 0.037 [†]

^{*300} patients for each group. Seed used for simulation = 5.

Figure 2. Re-randomisation results



- Following suggestions from [2] and [3], the alpha level would need to be calibrated/corrected to α^c to ensure asymptotic tests maintain the nominal α level.
- The R package EQUIVNONINF, via function bi2diffac, provides solution for cases where Central Limit Theorem holds (e.g. the standard TOST above), and in our simulation would lead to α^c = 0.036, thus 'invalidating' the claim of equivalence based on naïve TOST results.
- For non-parametric permutation-like tests like the one described here, simulations are required (future work)

Conclusion

- Re-randomisation techniques, whilst largely applicable in superiority trials, are difficult to apply in equivalence due to the reversing of null and alternative hypotheses
- Nevertheless, the proposed solution can be implemented, to back up study results, and due to its non-parametric foundation can be useful in scenarios where the underlying test assumptions might be violated
- As such this approach is a valuable alternative/support to standard parametric testing, and can be implemented in most standard software (though feasibility depends on sample size, ultimately)

References

- EMA/CHMP/295050/2013 Guideline on adjustment for baseline covariates in clinical trials.
- Wellek S. Testing statistical hypotheses of equivalence and noninferiority. Second edition. Boca Raton: Chapman & Hall/CRC Press, 2010
- R. Arboretti, E. Carrozzo, F. Pesarin, L. Salmaso, Testing for equivalence: an intersection-union permutation solution. arXiv:1802.01877

[†] TOST p-value = 0.0429 (using a margin of -0.1 to 0.1).