

DEPARTMENT OF STATISTICS

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The Analysis of Recurrent Events: A Summary of Methodology

↓

Dr Jennifer Rogers Director of Statistical Consultancy Services

Department of Statistics University of Oxford

www.jenniferrogers.co.uk @StatsJen

13th September 2016

Outline

Motivation

Conventional analyses

Examples

Problems

Setting

Recurrent Events

Examples

Objectives

Scientific Questions

Existing Models for Recurrent Events

Mean Cumulative Function Time-to-Event Event rates Application Considerations

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Outline

Motivation

Conventional analyses Examples Problems

Setting

Recurrent Events

Examples

Objectives

Scientific Questions

Existing Models for Recurrent Events

Mean Cumulative Function Time-to-Event Event rates Application

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Standard approach in many cardiovascular trials

- ► Include two or more types of related clinical events
- Increase event rate and avoid multiplicity
- Analysis focussed on time to first event
- ► Examples in cardiovascular trials:
 - CV death, MI and stroke in hypertension trials
 - CV death and HF hospitalisation in heart failure trials

EMPHASIS-HF Zanad F *et al*, NEJM 2011;364:11-21

- ► Eplerenone vs. placebo in 2737 patients with mild HF
- NYHA class II
- ► Ejection fraction ≤35%
- Tested hypothesis that eplerenone would reduce the risk of death and the risk of hospitalisation
- Primary outcome: composite of death from cardiovascular disease or hospitalisation for heart failure
- Analysed as time to first event using Cox proportional-hazards model

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Cox proportional-hazards model Background

- Most commonly used regression model in survival analysis
- Hazard function: describes conditional probability of an event occurring at time t, given that the event has not yet occurred
 - Instantaneous risk/intensity
 - $h(t) = \lim_{dt \to 0} \left\{ \frac{P(t \le T < t + dt | T \ge t)}{dt} \right\}$
- Models based on the hazard function can assess whether covariates have an effect on the hazard

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Cox proportional-hazards model Analysis strategy

In heart failure, analysis of composite endpoints proceeds in a standard manner:

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= 900

Cox proportional-hazards model Analysis strategy

In heart failure, analysis of composite endpoints proceeds in a standard manner:

- Exploratory analysis using Kaplan-Meier
 - *t*₍₁₎ < *t*₍₂₎ < *t*₍₃₎ < . . .: ordered event times
 - *m*_j: number at risk just before time *t*_(j)
 - d_j : number with event at time $t_{(j)}$

•
$$\hat{S}(t) = \prod_{j=1}^{k} \left(\frac{m_j - d_j}{m_j} \right), t_{(k)} \le t < t_{(k+1)}$$

(日) (日) (日) (日) (日) (日) (日)

Cox proportional-hazards model Analysis strategy

In heart failure, analysis of composite endpoints proceeds in a standard manner:

- Exploratory analysis using Kaplan-Meier
 - *t*₍₁₎ < *t*₍₂₎ < *t*₍₃₎ < . . .: ordered event times
 - *m*_j: number at risk just before time *t*_(j)
 - d_j : number with event at time $t_{(j)}$

•
$$\hat{S}(t) = \prod_{j=1}^{k} \left(\frac{m_j - d_j}{m_j} \right), t_{(k)} \le t < t_{(k+1)}$$

- Estimation using Cox proportional-hazards model
 - $h_i(t) = \exp\{\beta z_i\}h_0(t)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

EMPHASIS-HF Zanad F et al, NEJM 2011;364:11-21

(日)

CHARM-Preserved Yusuf S *et al*,The Lancet 2003;362:777-781

- ► CHARM: three parallel, independent trials
- Candesartan vs. placebo in 3021 patients with symptomatic heart failure
- ► CHARM-Preserved: preserved ejection fraction ≥ 40%
- Primary outcomes
 - Overall programme: all-cause mortality
 - Component trials: composite of death from cardiovascular disease or hospitalisation for heart failure
- Analysed as time to first event using Cox proportional-hazards model

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

CHARM-Preserved Yusuf S *et al*,The Lancet 2003;362:777-781

13th September 2016

The Analysis of Recurrent Events

(日)

Only first occurring endpoint is analysed

Furthermore...

- ► HF not characterised by a single event
- Chronic diseases characterised by recurrent events
- ► Repeat, non fatal events ignored

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

EMPHASIS-HF Median follow-up: 25 months

HF Hospitalisations	Eplerenone	Placebo
	(N=1364)	(N=1373)
\geq 1 admissions	186	277
\geq 2 admissions	67	110
All admissions	312	481
'Unused' admissions	126	204

ヘロト 人間 とくほ とくほとう

CHARM-Preserved Median follow-up: 37 months

HF Hospitalisations	Candesartan	Placebo
	(N=1513)	(N=1508)
\geq 1 admissions	230	278
\geq 2 admissions	95	114
All admissions	392	547
'Unused' admissions	162	269

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Outline

Motivation

Conventional analyses Examples Problems

Setting

Recurrent Events Examples

Objectives

Scientific Questions Existing Models for Recurrent Event Mean Cumulative Function Time-to-Event Event rates Application Considerations

・ロン ・四 と ・ ヨ と ・ ヨ と

Recurrent events What are recurrent events?

Recurrent events involve repeat occurrences of the same type of event over time

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Recurrent events What are recurrent events?

Recurrent events involve repeat occurrences of the same type of event over time

Examples include:

- Heart failure hospitalisations in CV studies
- Exacerbations in COPD trials
- Seizures in epilepsy trails
- Asthma attacks in asthma trials

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Patient profiles

13th September 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Focus of this tutorial

- We will consider indications where recurrent events are clinically meaningful
 - · Treatment expected to impact first event
 - Treatment also expected to impact subsequent events
- ► Limit to case where censoring is non-informative
- We shall be focussing more on analysis methods, rather than design aspects
- Events are instantaneous, i.e. they have no duration
- Events do not affect trial conduct, e.g. no treatment switching after an event

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

EMPHASIS-HF Patient profiles

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

EMPHASIS-HF Hospitalisation counts

	Enlerenone	Placebo		
		(N 1070)		
	(N=1364)	(N=13/3)		
Follow-up years	2916.07	2830.91		
Deaths	205	253		
CV deaths	178	215		
HF Hospitalisations:				
1	119	167		
2	41	60		
3	13	24		
4	6	12		
5	2	10		
6	1	4		
7	2	0		
8	1	0		
10	1	0		
All admissions	312	481		

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

CHARM-Preserved Patient profiles

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

CHARM-Preserved Hospitalisation counts

	0 1 1	
	Candesartan	Placebo
	(N=1514)	(N=1509)
Follow-up years	4424.62	4374.03
Deaths	244	237
CV deaths	170	170
HF Hospitalisatio	ns:	
1	135	164
2	56	55
3	23	25
4	9	13
5	4	9
6	1	4
7	2	2
8	0	2
\geq 9	0	4
All admissions	392	547

13th September 2016

The Analysis of Recurrent Events

Similarities Heart failure clinical trials

- Repeated hospitalisations are an indicator for worsening condition
- Relatively long follow-up
- Staggered study entry
- No fixed follow-up time (fixed date)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Outline

Motivation

Conventional analyses Examples Problems ting

Setting

Recurrent Events

Examples

Objectives

Scientific Questions

Existing Models for Recurrent Events

Mean Cumulative Function Time-to-Event Event rates Application onsiderations

・ロン ・四 と ・ ヨ と ・ ヨ と

Does the intervention decrease the event number over the study period compared to control?

- Does the intervention decrease the event number over the study period compared to control?
- How many events does the intervention prevent, on average, compared to control?

3

- Does the intervention decrease the event number over the study period compared to control?
- How many events does the intervention prevent, on average, compared to control?
- What is the intervention effect on the number of higher-order events, e.g. 3rd event, compared to control?

-

- Does the intervention decrease the event number over the study period compared to control?
- How many events does the intervention prevent, on average, compared to control?
- What is the intervention effect on the number of higher-order events, e.g. 3rd event, compared to control?
- What is the effect of intervention on the number of subsequent events among those who experienced a preceding event?

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Need to decide which aspect of the recurrent event data process is of interest

- 1. Cumulative number of events over a specified time period
 - Number of events by end of study events
- 2. Rate of events
 - Number of events per unit time
- 3. Time to event
 - Times to successive events
- 4. Gap times between successive events
 - Times between successive events

1. Cumulative number of events over a specified time period

• Number of events by end of study: 2 events

2. Rate of events

• Number of events per unit time: assuming constant rate leads to 1/6 events per week

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

3. Time to event

• Times to successive events: time to 1st and 2nd event, time to 3rd event censored at 12 weeks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4. Gap times between successive events
 - Times between successive events: gap times 1 & 2 and third gap time censored at 12 weeks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Recurrent event analysis Comparison with time-to-event

- ► Time-to-event endpoints
 - · Statistical approaches well established
 - Gold standard in many indications
 - Substantial experience in regulatory assessment

3
Recurrent event analysis Comparison with time-to-event

- ► Time-to-event endpoints
 - · Statistical approaches well established
 - Gold standard in many indications
 - Substantial experience in regulatory assessment
 - Ignores all events after the first

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Recurrent event analysis Comparison with time-to-event

- ► Time-to-event endpoints
 - Statistical approaches well established
 - Gold standard in many indications
 - Substantial experience in regulatory assessment
 - Ignores all events after the first
- Recurrent event endpoints
 - Statistical approaches more complex
 - Less regulatory experience
 - Good experience in some indications do exist (e.g. MS and asthma)

Recurrent event analysis Comparison with time-to-event

- ► Time-to-event endpoints
 - Statistical approaches well established
 - · Gold standard in many indications
 - Substantial experience in regulatory assessment
 - Ignores all events after the first
- Recurrent event endpoints
 - Statistical approaches more complex
 - Less regulatory experience
 - Good experience in some indications do exist (e.g. MS and asthma)
 - More efficient as information beyond the first event is used

Outline

Motivation

Conventional analyses

Examples

Problems

Setting

Recurrent Events

Examples

Objectives

Scientific Questions

Existing Models for Recurrent Events

Mean Cumulative Function Time-to-Event Event rates Application

Considerations

э.

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Recurrent Events Existing Methodology

- ► Non-parametric estimator for mean cumulative function
- Time-to-event approaches

Methods based on event rates

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Recurrent Events Existing Methodology

- ► Non-parametric estimator for mean cumulative function
- Time-to-event approaches
 - WLW: cumulative time from randomisation to events
 - PWP: analyses gap times, conditional risk sets
 - Andersen-Gill: extension of Cox proportional-hazards
 model

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Recurrent Events Existing Methodology

- ► Non-parametric estimator for mean cumulative function
- Time-to-event approaches
 - WLW: cumulative time from randomisation to events
 - PWP: analyses gap times, conditional risk sets
 - Andersen-Gill: extension of Cox proportional-hazards
 model
- Methods based on event rates
 - · Poisson: total events divided by follow-up
 - Negative Binomial: individual Poisson rates which vary according to Gamma

- N(t): Counting process, i.e. number of events a subject has experienced by time t
- Arbitrary MCF: $\mu(t) = \mathbb{E}\{N(t)\}$

How do we estimate $\mu(t) = \mathbb{E}\{N(t)\}$?

• dN(t): jump of N over a small time interval [t, t + dt]

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

- dN(t): jump of N over a small time interval [t, t + dt)
- $Y_i(t)$: indicator for subject *i* being at risk over [t, t + dt)

3

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

- dN(t): jump of N over a small time interval [t, t + dt)
- $Y_i(t)$: indicator for subject *i* being at risk over [t, t + dt)
- $Y_{\Sigma}(t) = \sum_{i=1}^{n} Y_i(t)$: total number at risk over [t, t + dt), where *n* is number of randomised subjects

- dN(t): jump of N over a small time interval [t, t + dt)
- $Y_i(t)$: indicator for subject *i* being at risk over [t, t + dt)
- $Y_{\Sigma}(t) = \sum_{i=1}^{n} Y_i(t)$: total number at risk over [t, t + dt), where *n* is number of randomised subjects
- $dN_{\Sigma}(t) = \sum_{i=1}^{n} Y_i(t) dN_i(t)$: total number of events observed over [t, t + dt)

- dN(t): jump of N over a small time interval [t, t + dt)
- $Y_i(t)$: indicator for subject *i* being at risk over [t, t + dt)
- $Y_{\Sigma}(t) = \sum_{i=1}^{n} Y_i(t)$: total number at risk over [t, t + dt), where *n* is number of randomised subjects
- ► $dN_{\Sigma}(t) = \sum_{i=1}^{n} Y_i(t) dN_i(t)$: total number of events observed over [t, t + dt)

► $t_{(1)}, t_{(2)}, \dots, t_{(H)}$: *H* distinct event times across all *n* patients

- dN(t): jump of N over a small time interval [t, t + dt)
- $Y_i(t)$: indicator for subject *i* being at risk over [t, t + dt)
- $Y_{\Sigma}(t) = \sum_{i=1}^{n} Y_i(t)$: total number at risk over [t, t + dt), where *n* is number of randomised subjects
- ► $dN_{\Sigma}(t) = \sum_{i=1}^{n} Y_i(t) dN_i(t)$: total number of events observed over [t, t + dt)

► $t_{(1)}, t_{(2)}, \dots, t_{(H)}$: *H* distinct event times across all *n* patients

Nelson-Aalen estimator for the MCF is given by:

$$\hat{\mu}(t) = \sum_{\{h|t_{(h)} \leq t\}} \frac{dN_{\Sigma}(t_{(h)})}{Y_{\Sigma}(t_{(h)})}$$

EMPHASIS-HF Mean cumulative function

The Analysis of Recurrent Events

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

EMPHASIS-HF Mean cumulative function

13th September 2016

The Analysis of Recurrent Events

ъ

・ロット (雪) (日) (日)

EMPHASIS-HF Mean cumulative function

The Analysis of Recurrent Events

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

CHARM-Preserved Mean cumulative function

13th September 2016

The Analysis of Recurrent Events

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

CHARM-Preserved Mean cumulative function

13th September 2016

The Analysis of Recurrent Events

э

(日)

CHARM-Preserved Mean cumulative function

13th September 2016

The Analysis of Recurrent Events

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

WLW (Wei-Lin-Weissfeld) Analysis method

- ▶ Interested in first *K* events
- Analyse each time ordered event using a Cox proportional-hazards model
- Estimate test statistic or hazard ratio for each time ordered event
- ► Combine *K* estimates using optimal weights or 1/variance

WLW (Wei-Lin-Weissfeld) Patient profiles

13th September 2016

The Analysis of Recurrent Events

э

▲□ > ▲圖 > ▲ ヨ > ▲ ヨ > -

EMPHASIS-HF Application

	HR	95% CI	<i>p</i> -value
1st HFH	0.63	(0.53,0.76)	< 0.001
2nd HFH	0.58	(0.43,0.79)	< 0.001
3rd HFH	0.50	(0.31,0.80)	0.004

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

EMPHASIS-HF Application

-		HR	95% CI	<i>p</i> -value
	1st HFH	0.63	(0.53,0.76)	< 0.001
	2nd HFH	0.58	(0.43,0.79)	< 0.001
	3rd HFH	0.50	(0.31,0.80)	0.004

- ▶ 463 had at least 1 HFH
- 177 had at least 2 HFH
- 76 had at least 3 HFH

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

EMPHASIS-HF Hospitalisation counts

	Eplerenone	Placebo
	(N=1364)	(N=1373)
Follow-up years	2916.07	2830.91
Deaths	205	253
CV deaths	178	215
HF Hospitalisation	ns:	
1	119	167
2	41	60
3	13	24
4	6	12
5	2	10
6	1	4
7	2	0
8	1	0
10	1	0
All admissions	312	481

CHARM-Preserved Application

	HR	95% CI	<i>p</i> -value
1st HFH	0.80	(0.68,0.96)	0.015
2nd HFH	0.82	(0.62,1.07)	0.146
3rd HFH	0.65	(0.43,0.97)	0.036

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

WLW (Wei-Lin-Weissfeld) Properties

- Preserves randomisation
- Analyses cumulative effect of treatment on hospitalisations from randomisation
 - · Effect on second includes effect on first
 - Difficult to interpret global treatment effects
- Semi-parametric approach: no assumption on baseline hazard needed
- Can't analyse all hospitalisations due to small numbers for higher order events
- ▶ Need to specify *K* in advance
- Subjects considered to be at risk for event k, even if they haven't experienced event k − 1

PWP (Prentice-Williams-Peterson) Analysis method

- Analyses gap times between different failures
- Subject not at risk of second event until they've had a first
 - Conditional risk set for event k made up of all subjects who have had event k – 1
- Analyse each time ordered event using a Cox proportional-hazards model
- Estimate test statistic or hazard ratio for each time ordered event
- ► Combine *K* estimates using optimal weights or 1/variance

PWP (Prentice-Williams-Peterson) Patient profiles

・ロット (雪) (日) (日)

CHARM-Preserved Application

	HR	95% CI	<i>p</i> -value
1st HFH	0.80	(0.68,0.96)	0.015
2nd HFH	0.99	(0.76,1.30)	0.959
3rd HFH	0.68	(0.46,1.02)	0.066

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > <

CHARM-Preserved Application

	HR	95% CI	<i>p</i> -value
1st HFH	0.80	(0.68,0.96)	0.015
2nd HFH	0.99	(0.76,1.30)	0.959
3rd HFH	0.68	(0.46,1.02)	0.066

- ▶ 508 had at least 1 HFH
- ▶ 209 had at least 2 HFH
- ▶ 98 had at least 3 HFH

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PWP (Prentice-Williams-Peterson) Properties

- Semi-parametric approach: no assumption on baseline hazard needed
- Conditional risk sets better reflect true disease progression
- Doesn't assume common baseline hazard for each gap time
- Can't analyse all hospitalisations due to small numbers for higher order events
- ▶ Need to specify *K* in advance
- Parameters for each of the k events need to be interpreted conditionally: treatment comparisons are not protected through randomisation
- Difficult to interpret global treatment effects

- Extension of Cox proportional-hazards model (proportional-intensity)
 - $\lambda(t) = \exp\{\beta z_i\}\lambda_0(t)$
 - $\lambda_0(t)$: baseline intensity function
- Each gap time contributes to the likelihood
- Gives a intensity/hazard ratio for recurrent events
- Assumes that events are independent
 - Robust standard errors accommodate heterogeneity

CHARM-Preserved Patient profiles

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

- Semi-parametric approach: no assumption on baseline hazard needed
- ► Can analyse all hospitalisations for all individuals
- Assumes common baseline hazard for each gap time
- Proportionality assumption may be too strong in practice
 - Intensity/hazard ratio assumed to be constant through time and common across recurrent events

- Commonly used for event rates
- Simple: total number of events divided by total follow-up in each group
- Gives a rate ratio for recurrent events
- Assumes that all events are independent
- Perform a Poisson regression on the count data, adjusting for treatment and including an offset for time in the study

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・
Negative Binomial Analysis method

- Events within an individual related naturally accommodated by negative binomial
- Each individual has their own individual Poisson hospitalisation rate
- Poisson rates vary according to Gamma
- ► Straightforward to implement
- Does not require complex data files
- Perform a negative binomial regression on the count data, adjusting for treatment and including an offset for time in the study

Negative Binomial Properties

- Simple and naturally allows for overdispersion
- Correlation of events with the same individual is accounted for through the inclusion of a random effect term
- Poisson process assumption for the conditional counting process may not hold
- Constant baseline assumption may be too strong in practice
 - Could assume other parametric models for conditional counting process
- Rate ratio also assumed to be constant over time and common across recurrent events

EMPHASIS-HF Application

_

ŀ	HR	95% CI		o-value
Composite 0	.69	(0.59,0.	81) <	0.001
	RF	8 95	i% Cl	<i>p</i> -value
Poisson	0.6	3 (0.5	5,0.73)	< 0.001
Negative binomial	0.5	3 (0.4	2,0.66)	< 0.001

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

CHARM-Preserved Application

	HR	95% CI	<i>p</i> -value
Adjudicated composite	0.89	(0.77,1.03)	0.118
Unadjudicated composite	0.86	(0.74,1.00)	0.050

	RR	95% CI	<i>p</i> -value
Poisson	0.71	(0.62,0.81)	< 0.001
Negative binomial	0.68	(0.54,0.85)	< 0.001
Andersen-Gill	0.71	(0.57,0.88)	0.002

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

EMPHASIS-HF Summary

	HR	95% CI	<i>p</i> -value
Composite	0.69	(0.59,0.81)	< 0.001
WLW 1st HFH	0.63	(0.53,0.76)	< 0.001
WLW 2nd HFH	0.58	(0.43,0.79)	< 0.001
WLW 3rd HFH	0.50	(0.31,0.80)	0.004
Poisson	0.63	(0.55,0.73)	< 0.001
Negative binomial	0.53	(0.42,0.66)	< 0.001

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

CHARM-Preserved Summary

	HR	95% CI	<i>p</i> -value
Adjudicated composite	0.89	(0.77,1.03)	0.118
Unadjudicated composite	0.86	(0.74,1.00)	0.050
WLW 1st HFH	0.80	(0.68,0.96)	0.015
WLW 2nd HFH	0.82	(0.62,1.07)	0.146
WLW 3rd HFH	0.65	(0.43,0.97)	0.036
PWP 1st HFH	0.80	(0.68,0.96)	0.015
PWP 2nd HFH	0.99	(0.76,1.30)	0.959
PWP 3rd HFH	0.68	(0.46,1.02)	0.066
Poisson	0.71	(0.62,0.81)	< 0.001
Negative binomial	0.68	(0.54,0.85)	< 0.001
Andersen-Gill	0.71	(0.57,0.88)	0.002

- Treatment acts on incidence of first hospitalisations and on recurrences
- EMPHASIS-HF
 - Poisson for firsts: 0.65 (0.54-0.73, P< 0.001)
 - Negative binomial for repeats: 0.52 (0.33-0.82, P=0.004)
- CHARM-Preserved
 - Poisson for firsts: 0.82 (0.69-0.97, P=0.025)
 - Negative binomial for repeats: 0.58 (0.39-0.87, P=0.009)

Outline

Motivation

Conventional analyses

Examples

Problems

Setting

Recurrent Events

Examples

Objectives

Scientific Questions

Existing Models for Recurrent Events

Mean Cumulative Function Time-to-Event Event rates

Application

Considerations

・ロン ・四 と ・ ヨ と ・ ヨ と

Scientific questions What are we interested in?

- Does the intervention decrease the event number over the study period compared to control?
- How many events does the intervention prevent, on average, compared to control?
- What is the intervention effect on the number of higher-order events, e.g. 3rd event, compared to control?
- What is the effect of intervention on the number of subsequent events among those who experienced a preceding event?

Statistical Considerations Summary

Modelling framework

- Fully parametric
- Semi-parametric
- Non-parametric

Event rate

- Constant
- Time-varying
- Unspecified
- Overdispersion
- Censoring
 - Informative censoring assumption More hospitalisations→ increased risk of death
 - Terminal event

э.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト