Group sequential designs with negative binomial data

Ekkehard Glimm¹ Tobias Mütze ^{2,3}

¹Statistical Methodology, Novartis, Basel, Switzerland

²Department of Medical Statistics, University Medical Center Göttingen

³DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany

Thanks to Tim Friede and Heinz Schmidli

PSI/BBS One-day meeting Basel September 13, 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

2 Fixed design

Group sequential designs

Assessing operating characteristics

イロト 不得下 イヨト イヨト 二日

2 / 28

5 Discussion and outlook

Example 1: Clinical trials in heart failure

- Heart failure (HF) with preserved ejection fraction (HFpEF)
- Primary endpoint: Number of heart failure hospitalizations (HFH)
- HFH can be modeled with negative binomial distribution (Rogers et al., 2014)
- Example: the CHARM-Preserved trial (Yusuf et al., 2003)

Table:	Heart failure	hospitalizations in	n CHARM-preserved

	DI 1	<u> </u>
	Placebo	Candesartan
Number of patients	1509	1514
Total follow-up years	4374.03	4424.62
Patients with ≥ 1 admission	278	230
Total admissions	547	392

• Rate ratio for recurrent heart failure hospitalizations according to negative binomial model $\theta = 0.71$

Example 2: Clinical trials in relapsing-remitting multiple sclerosis

- Primary endpoint: number of combined unique active lesions (CULAs)
- CULAs are modeled using the negative binomial distribution
- Example: Phase II study of Siponimod (Selmaj et al., 2013)
 - Placebo and five doses of Siponimod
 - Equal follow-up times (in general either 3 or 6 months)

Table: Monthly number of lesions (at 3 months)

	Placebo	Siponimod 0.25 mg	Siponimod 0.5 mg
Number of patients	61	51	43
Monthly CULAS	1.39	0.78	0.54

Statistical model

• Number of counts for patient $i = 1, ..., n_j$ receiving treatment j = 1, 2

$$Y_{ij}|\lambda_{ij} \sim \mathsf{Pois}(t_{ij}\lambda_{ij})$$

- Follow-up per patient: t_{ij}
- Gamma-mixture for the rates

$$\lambda_{ij} \sim \Gamma\left(rac{1}{\phi}, rac{1}{\phi\mu_j}
ight)$$

• Marginal distribution of counts

$$Y_{ij} \sim \mathsf{NB}(t_{ij}\mu_j,\phi)$$

• Expected value and variance

$$\mathbb{E}[Y_{ij}] = t_{ij}\mu_j$$

$$\operatorname{Var}[Y_{ij}] = t_{ij}\mu_j(1 + \phi t_{ij}\mu_j)$$

Hypothesis testing I

Statistical hypothesis

$$H_0: rac{\mu_1}{\mu_2} \geq 1 \quad {
m vs.} \quad H_1: rac{\mu_1}{\mu_2} < 1.$$

- Hypothesis is tested using a Wald-type test of the maximum-likelihood estimators β_j of the log-rates β_j = log(μ_j)
- Wald-type test statistic

$$T=rac{\hat{eta_1}-\hat{eta_2}}{\sqrt{rac{1}{\hat{m{l}}_{m{eta_1}}+rac{1}{\hat{m{l}}_{m{eta_2}}}}} \stackrel{ extsf{H_0}}{\overset{ extsf{asymp.}}{\longrightarrow}}\mathcal{N}(0,1)$$

Hypothesis testing II

• Fisher information of log-rates β_j

$$I_{eta_j} = \sum_{i=1}^{n_j} rac{t_{ij} \exp(eta_j)}{1 + \phi t_{ij} \exp(eta_j)} = \sum_{i=1}^{n_j} rac{t_{ij} \mu_j}{1 + \phi t_{ij} \mu_j}.$$

(Reminder: $I_{\beta_i}^{-1}$ is the asymptotic variance of the MLE $\hat{\beta}_j$.)

• Information level $\mathcal{I}_{\textit{fix}}$ describes "knowledge" about unknown treatment effect

$$\mathcal{I}_{\mathit{fix}} = rac{1}{rac{1}{I_{eta_1}}+rac{1}{I_{eta_2}}} = rac{I_{eta_1}I_{eta_2}}{I_{eta_1}+I_{eta_2}}$$

Sample size planning by solving equation

$$\mathcal{I}_{\text{fix}} \stackrel{!}{=} \frac{(q_{1-\beta} - q_{1-\alpha})^2}{(\beta_1 - \beta_2)^2}$$

7 / 28

Group sequential designs: Overview

- Test the hypothesis H₀ at several interim analyses and stop the trial if H₀ can be rejected (stop for efficacy)
- The interim analyses are performed with the Wald-type test using all data available up to that point in time
- Counts of patient *i* in treatment *j* at analysis k: $Y_{ijk} \sim NB(t_{ijk}\mu_j, \phi)$
- *t_{ijk}* is the follow-up time until analysis *k*
- The final analysis is performed when a prespecified information level \mathcal{I}_{max} is attained (maximum information trial)

Type I error

• Critical values of the individual tests c_k must be chosen such that global type I error α , i.e.

$$\alpha \leq \mathbb{P}_{H_0}(T_k < c_k \text{ for at least one } k = 1, \dots, K).$$

• Allocate global type I error $\alpha = \sum_{k=1}^{K} \pi_k$

• Type I error rate π_k for analysis k

$$\mathbb{P}_{\mathcal{H}_0}\left(T_1 \geq c_1, \ldots, T_{k-1} \geq c_{k-1}, T_k < c_k\right) = \pi_k$$

• Choose π_k through error spending function $f : [0, \infty) \to [0, \alpha]$ with f(0) = 0 and $f(t) = \alpha, t \ge 1$:

$$\pi_{1} = f\left(\mathcal{I}_{1}/\mathcal{I}_{max}\right),$$

$$\pi_{k} = f\left(\mathcal{I}_{k}/\mathcal{I}_{max}\right) - f\left(\mathcal{I}_{k-1}/\mathcal{I}_{max}\right) \quad k = 2, 3, \dots$$

Critical values

- First critical value is the normal quantile $c_1 = q_{\pi_1}$
- Joint distribution (T_1, \ldots, T_k) required to calculate critical value c_k
- Asymptotic normality of joint distribution has canonical form [Scharfstein et al., 1997]

$$(T_1,\ldots,T_k)' \to \mathcal{N}(0,\Sigma_k)$$

with

$$(\Sigma_k)_{(k_1,k_2)} = (\Sigma_k)_{(k_2,k_1)} = \sqrt{\frac{\mathcal{I}_{k_1}}{\mathcal{I}_{k_2}}}, \qquad 1 \le k_1 \le k_2 \le k.$$

Type I error

Practical considerations

- Information level depends on rates μ_i , shape parameter ϕ , follow-up times t_{iik} , and sample size n_i
- At analysis k, \mathcal{I}_k not known and is estimated by plugging in the rate and shape maximum-likelihood estimators
- Critical value c_k is not determined prior to the trial but at the time of analysis k
- $\hat{\mathcal{I}}_k$ is the estimated information level of stage k obtained with the data available at interim k

Practical considerations continued

• In practice the following estimators are considered

$$\begin{aligned} \hat{\pi}_{1} &= f\left(\hat{\mathcal{I}}_{1}/\mathcal{I}_{max}\right) \\ \hat{\pi}_{k} &= f\left(\hat{\mathcal{I}}_{k}/\mathcal{I}_{max}\right) - f\left(\hat{\mathcal{I}}_{k-1}/\mathcal{I}_{max}\right) \quad k = 2, 3, \dots \\ \left(\hat{\Sigma}_{k}\right)_{(k_{1},k_{2})} &= \sqrt{\frac{\hat{\mathcal{I}}_{k_{1}}}{\hat{\mathcal{I}}_{k_{2}}}} \end{aligned}$$

• Estimated information might decrease if sample sizes or time between analyses is small, i.e. $\hat{\mathcal{I}}_k < \hat{\mathcal{I}}_{k-1}$

• then analysis is skipped \Leftrightarrow critical value $c_k = \infty$

• "Locally" allocated type I error preserves the global type I error

$$\sum_{i=1}^{\kappa} \hat{\pi}_k = \alpha$$

12 / 28

Planning of group sequential trials

• Power for given set of critical values c_1, \ldots, c_K

$$\mathsf{Power} = 1 - \mathbb{P}_{\mathcal{H}_1} \left(\mathcal{T}_1 \geq \mathsf{c}_1, \dots, \mathcal{T}_\mathcal{K} \geq \mathsf{c}_\mathcal{K}
ight)$$

• For rate ratio θ^* in alternative, joint distribution (T_1, \ldots, T_K) approximately normal with mean vector $\log(\theta^*)(\sqrt{\mathcal{I}_1}, \ldots, \sqrt{\mathcal{I}_K})'$

• For planning purposes, we write

$$\mathcal{I}_k = w_k \mathcal{I}_{max}, \quad k = 1, \dots, K, \quad w_k \in (0, 1]$$

• Calculate maximum information \mathcal{I}_{\max} required to obtain power of $1-\beta$ by solving

$$1 - \mathbb{P}_{\theta^*} (T_1 \ge c_1, \ldots, T_K \ge c_K) = \beta$$

 Sample size, study duration, etc must be selected such that the maximum information is obtained

Simulation study - preface

• In the simulation, interim analysis time points are determined by theoretical information levels \mathcal{I}_k . The actual estimated information levels $\hat{\mathcal{I}}_k$ differ from this.

• Use of spending functions which imitate critical values of Pocock's test and O'Brien & Fleming's test

• Recruitment times uniform in fixed accrual period

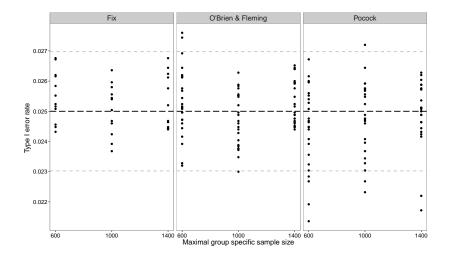
Simulation scenarios - type I error

• Simulation scenarios motivated by the number of hospitalizations from Example 1

Parameter	Values
Type I error rate $lpha$	0.025
Annual rates $\mu_1=\mu_2$	0.08, 0.1, 0.12
Shape parameter ϕ	2, 3, 4, 5
Group sample size $n_1 = n_2$	600, 1000, 1400
Stages <i>K</i>	2, 5
Study duration	3.5 (years)
Recruitment period	1.25 (years)

• 25 000 Monte Carlo replications per scenario

Results - type I error



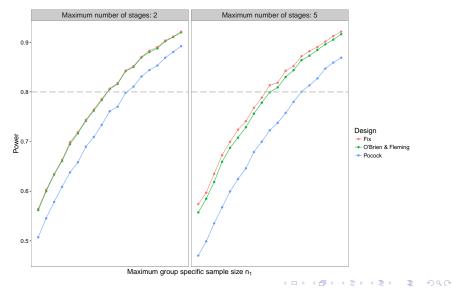
Simulation scenarios - power

• Parameters for the Monte Carlo simulation study of the power

Parameter	Values
Type I error rate $lpha$	0.025
Annual rate μ_1	0.0875
Annual rate μ_2	0.125
Rate ratio μ_1/μ_2	0.7
Group sample size $n_1 = n_2$	$600, 650, \ldots, 1500$
Shape parameter ϕ	5
Stages <i>K</i>	2, 5
Study duration	3.5 (years)
Recruitment period	1.25 (years)

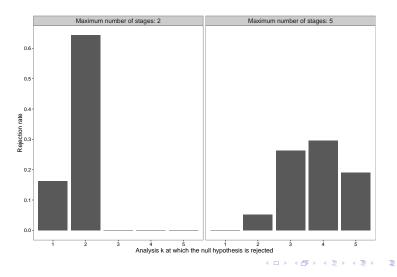
• 25 000 Monte Carlo replications per scenario

Results - power



Results - stopping times

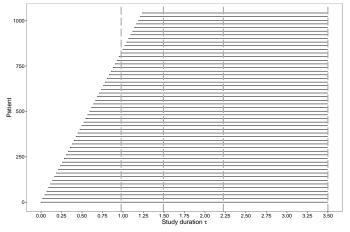
• Rejections by stage (O'Brien-Fleming, total power of 80%)



19/28

Results - gains from stopping early

• Study times at which in theory 25%, 50%, 75%, and 100% of the maximum information level \mathcal{I}_{max} is attained



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

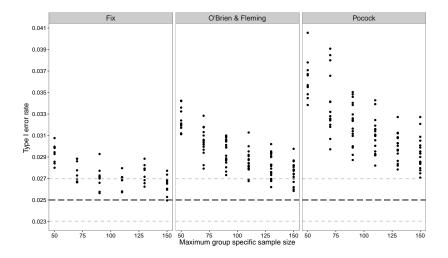
Simulation scenarios - type I error

• Simulation scenarios motivated by the CULAs from Example 2

Parameter	Values
Type I error rate $lpha$	0.025
6-month rates $\mu_1=\mu_2$	6, 8, 10
Shape parameter ϕ	2, 3, 4
Group sample size $n_1 = n_2$	$50, 70, \ldots, 150$
Stages <i>K</i>	2, 3
Individual follow-up	0.5 (years)
Recruitment period	1.5 (years)

- 18 scenarios per group sample size for group sequential designs and 9 scenarios for the fixed design
- 25 000 Monte Carlo replications per scenario

Results - type I error



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

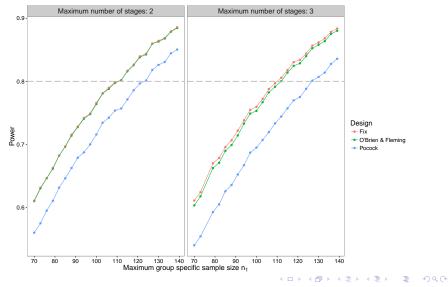
Simulation scenarios - power

• Parameters for the Monte Carlo simulation study of the power

Values
0.025
4.2
8.4
$70, 75, \ldots, 140$
3
2
0.5 (years)
1.5 (years)

• 25 000 Monte Carlo replications per scenario

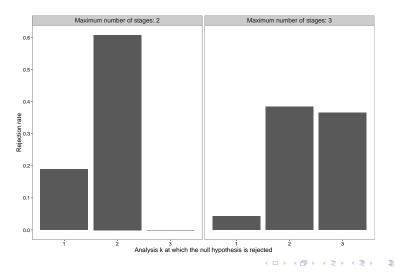
Results - power



24 / 28

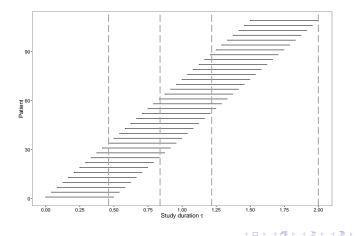
Results - analysis specific rejection rate

• Rate of stopping at a specific analysis at a power of 80%



Results - gains from stopping early

• Study times at which in theory 25%, 50%, 75%, and 100% of the maximum information level \mathcal{I}_{max} is attained



Discussion and outlook

- Maximum-likelihood theory for negative binomial data results asymptotically in canonical form of joint distribution of test statistic
- Information level depends on rates, shape parameter, follow-up times, and sample size
- Future research on group sequential with negative binomial endpoints
 - Blinded information monitoring
 - Adaptive group sequential designs
 - Optimal designs
- Extend approach to quasi-Poisson models in the future

Bibliography

DO. Scharfstein, AA. Tsiatis, JM. Robins (1997).

Semiparametric efficiency and its implication on the design and analysis of group-sequential studies.

Journal of the American Statistical Association, 92:1342-1350.

S. Yusuf et al. (2003)

Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. The Lancet. **362**:777–781.

JK. Rogers, SJ. Pocock, JJV. McMurray, CB. Granger, EL. Michelson, J. Östergren, MA. Pfeffer, SD. Solomon, K. Swedberg, S. Yusuf (2014) Analysing recurrent hospitalizations in heart failure: a review of statistical methodology, with application to CHARM-Preserved. European Journal of Heart Failure, 16:33–40.

▶

K. Selmaj, SKB. Li, HP. Hartung, B. Hemmer, L. Kappos, MS. Freedman, O. Stüve, P. Rieckmann, X. Montalban, T. Ziemssen (2013) *Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study.* The Lancet Neurology, **12**:756–767.