

Interuniversity Institute for Biostatistics and statistical Bioinformatics

A novel approach to estimation of the time to biomarker threshold: Applications to HIV

Pharmaceutical Statistics, Volume 15, Issue 6, Pages 541-549, November/December 2016 PSI Journal Club – 22 March 2017

Tarylee Reddy 1,2 , Geert Molenberghs 2,3 , Edmund Njeru Njagi 2 and Marc Aerts 2

Biostatistics Unit, South African Medical Research Council, Durban, South Africa
 I-BioStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium
 I-BioStat, KU Leuven, B-3000 Leuven, Belgium

Outline

- Introduction
- Review of current approaches
- Proposed approach
- Application
- Discussion

Introduction

- Biomarkers for clinical events are particularly useful in the study of the HIV
- Two key biomarkers in HIV

CD4 count (ARV initiation)

Viral load (Treatment success)

- The time to reach a relevant CD4 count threshold in follow-up studies is used as a surrogate endpoint in studies examining HIV progression
- CD4 count subject to a high degree of fluctuation and measurement error
- A single CD4 count below a relevant threshold should be interpreted with caution
- Persistence criteria- two consecutive rule.
- Convention: First extract the time of the event, which is analysed in a second stage within the survival analysis framework.

Issues with the standard approach

- The standard approach assumes that the event times are observed without error
- Is not viable when the interval between visits is large
- Patients who enter the study with a CD4 count below the threshold are generally omitted - biases
- A method which takes into account the underlying marker trajectory, measurement error and left censoring is needed.

Model based approaches

- Multistate models
- Inverse prediction

Extract the "true" patient specific marker trajectory

$$y_i = \beta_{0i} + \beta_{1i}t + \varepsilon_i$$

$$T_i = \frac{k - \beta_{oi}}{\beta_{1i}}$$

Issues:

- Cannot accommodate complex functions of time
- In the classical framework the properties of T_i are difficult to compute and simulation may be necessary

Proposed approach

- Stage 1: A mixed model is fitted to the longitudinal measurements, resulting in patient-specific predicted values which are a function of the fixed-effects and empirical Bayes estimates.
- Stage 2: The probability of experiencing two consecutive measurements less than a relevant threshold k at each time point is computed. Using these estimates, the time to obtain two consecutive low CD4 counts is computed.

Methodology

Letting Y_{ij} denote the CD4 count observed on individual i at time point j, where j = 1 corresponds to an occasion at which one starts considering the individual as possibly seroconverting, the time to event T_i can be expressed as

$$T_i = \min\{j \ge 2: Y_{ij-1} \le k, Y_{ij} \le k\}.$$
 (1)

It follows that the expected time for individual i to attain two consecutive CD4 counts less than the threshold k can be expressed as follows:

$$E(T_{i}) = t_{i2}P(Y_{i1} \leq k, Y_{i2} \leq k) + t_{i3}P(Y_{i1} > k, Y_{i2} \leq k, Y_{i3} \leq k) + t_{i4} \begin{cases} P(Y_{i1} > k, Y_{i2} > k, Y_{i3} \leq k, Y_{i4} \leq k) \\ +P(Y_{i1} \leq k, Y_{i2} > k, Y_{i3} \leq k, Y_{i4} \leq k) \end{cases} + \cdots = \sum_{i=2}^{\infty} t_{ii}S_{ii},$$

$$(2)$$

where S_{ij} denotes the probability of individual i experiencing the event, or 'stopping', at t_{ij} .

Methodology

We specify a linear mixed model which satisfies

$$\mathbf{Y}_{i} = X_{i}\boldsymbol{\beta} + Z_{i}\mathbf{b}_{i} + \boldsymbol{\varepsilon}_{i}$$

$$\mathbf{b}_{i} \sim N(\mathbf{0}, D),$$

$$\boldsymbol{\varepsilon}_{i} \sim N(\mathbf{0}, \Sigma_{i}),$$
(3)

where $\mathbf{b}_1, \dots, \mathbf{b}_N, \boldsymbol{\varepsilon}_i, \dots, \boldsymbol{\varepsilon}_N$ are independent. $\boldsymbol{\beta}$ and \mathbf{b}_i represent the fixed and random effects, respectively. It follows that

$$\mathbf{Y}_i | \mathbf{b}_i \sim N(X_i \boldsymbol{\beta} + Z_i \mathbf{b}_i, \Sigma_i).$$

Methodology

Assuming conditional independence in the linear mixed model such that $\Sigma_i = \sigma^2 I_{n_i}$, the joint probabilities which form S_{ij} reduce to the product of the individual probabilities. Hence,

$$S_{ij}|X_i, Z_i, \mathbf{b}_i, \boldsymbol{\beta} = C_{ij-3}P(Y_{ij-2} > k)P(Y_{ij-1} \le k)P(Y_{ij} \le k)$$

= $C_{ij-3}[1 - \widetilde{\Phi}_{ij-2}(k)][\widetilde{\Phi}_{ij-1}(k)][\widetilde{\Phi}_{ij}(k)],$

where C_{ij-3} denotes the 'continuation probability' at time t_{ij-3} and $\widetilde{\Phi}_{ij}(k)$ is a cumulative normal distribution with mean $\mathbf{x}'_{ij}\boldsymbol{\beta} + \mathbf{z}'_{ij}\mathbf{b}_i$ and variance σ^2 .

Computational efficiency

• It follows that $\widetilde{\Phi}_{ij}(k)$ can be expressed as a simple function of the standard univariate normal distribution:

$$\widetilde{\Phi}_{ij}(k) = \Phi\left(\frac{k - \mathbf{x}'_{ij}\boldsymbol{\beta} - \mathbf{z}'_{ij}\mathbf{b}_i}{\sigma}\right)$$

Recursive relationship of continuation probabilities

$$C_{ij} = C_{j-2}[1 - \Phi_{ij-1}(k)][\Phi_{ij}(k)] + C_{j-1}[1 - \Phi_{ij}(k)].$$

Estimation and Inference

We propose a conditional version of the non-parametric case bootstrap to compute 95% confidence intervals for \hat{T}_i as follows:

- Step 1. Individual i is removed from the full dataset resulting in N 1 cases
- Step 2. Sample N 1 subjects with replacement from the dataset in Step 1
- Step 3. Append the data of individual i to the bootstrap sample
- Step 4. Compute \widehat{T}_i

This process is repeated 1000 times.

Application

- The Sinikithemba cohort comprises 336 HIV-1 subtype C chronically infected adults enrolled in the McCord Hospital (Durban, South Africa) between August 2003 and 2008
- CD4 count and viral load were measured every 3 and 6 months, respectively, from enrollment.
- Guidelines implemented during the study period, patients were recommended to start ARV treatment upon reaching a CD4 count less than 200 cells/mm³ or WHO stage 3 or 4 symptoms.
- The median CD4 count at enrolment was 357 (IQR: 259-509) cells/mm³ and the mean viral load was 4.7 log copies/ml.

Application

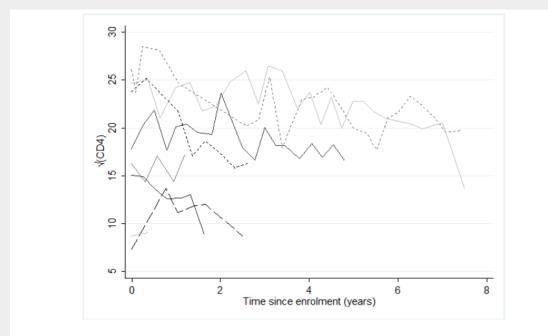


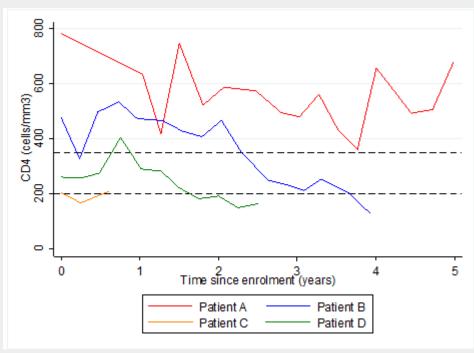
Figure 1: Longitudinal CD4 count measurements for 8 subjects on the square root scale

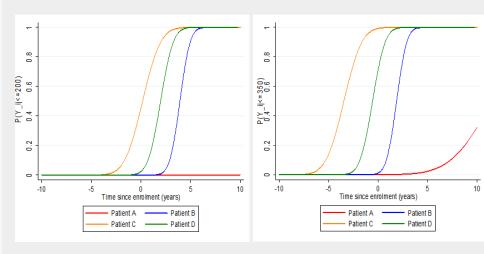
and statistical Bioinformatics

Stage 1: Linear mixed model

Table 1: HIV cohort Data. Parameter estimates (standard errors) for the fitted models on each timescale

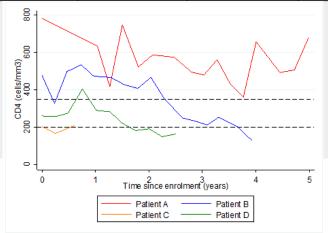
for the fitted models on each timescale							
Effect		Timescale	Timescale				
	Parameter	enrolment origin	Calendar origin				
Fixed effects estimates	(s.e.)						
Intercept	$eta_{0,L}$	21.2405 (0.471)	22.0000 (0.551)				
	$\beta_{0,M}$	19.4469 (0.419)	20.6554 (0.498)				
	$eta_{0,H}$	16.2821 (0.406)	17.5021 (0.491)				
Time	$eta_{1,L}$	-0.5744 (0.121)	-0.5658 (0.117)				
	$eta_{1,M}$	-1.0160 (0.114)	-0.9454 (0.110)				
	$eta_{1,H}$	-1.3839 (0.140)	-1.1066 (0.133)				
Covariance parameter	estimates (s.e.)						
$var(b_{0i})$	d_{11}	19.5555 (1.608)	25.5456(2.272)				
$cov(b_{0i}, b_{1i})$	d_{12}	-0.4944 (0.382)	-2.1611 (0.470)				
$var(b_{1i})$	d_{22}	0.9941 (0.142)	0.9438 (0.130)				
Measurement error	σ^2	3.1923 (0.081)	3.2135 (0.081)				
Fit statistics							
AIC		17185.3	17225.9				
BIC		17200.5	17241.1				
-2 REML log-likelihood		17177.3	17217.9				




Assumptions

- We allow a 10-year window relative to enrolment where we consider an individual as having the potential to have experienced the threshold.
- The rationale for this decision is based on the estimated time from seroconversion to death in ART naive patients which was reported to be approximately 10 years in Sub-Saharan Africa.
- The discrete times which fall outside of the observation period were created in accordance with the study design of three monthly visits.
- The series was truncated at the visit at which \hat{Y}_{ij} dropped to zero. Similarly, time t_{i1} was defined as the minimum time at which \hat{Y}_{ij} < 1500 cells/mm³,

Stage 2: Predicted probabilities



and statistical Bioinformatics

Stage 2: Estimated time to threshold

Table 2: Estimated time to threshold for patients A, B, C, and D

			≤ 200 (cells/mm³	≤ 350 cells/mm³	
	VL	Baseline CD4	\widehat{T}_i	95% CI	$\widehat{T_i}$	95% CI
Patient						
А	Low	783	2. 92 x 10 -5	(8.88 x 10 ⁻⁶ , 8.24 x 10 ⁻⁵)	3.1552	(2.4946, 3.7362)
В	Low	478	4.2858	(4.2343, 4.3843)	2.3046	(2.2887, 2.3169)
С	High	204	0.3758	(0.0267, 0.5319)	-3.2608	(-5.0051, -2.2874)
D	High	261	2.3335	(2.3005, 2.3763)	-0.2043	(-0.4039, -0.0642)

and statistical Bioinformatics

Key findings

• 30 individuals had a zero probability of obtaining a CD4 count<200 throughout the period considered – Long term non-progressors?

Excluding the individuals who were long term non-progressors, the percentiles of the estimated times were computed.

- 15% of these patients had already attained two consecutive CD4 counts less than 200 more than six months prior to first presentation at the clinic.
- 35% of patients had already attained two consecutive CD4 counts less than 350 cells/mm³ more than two years prior to enrollment.

Sensitivity analysis

Scenario 1. A period of 10 years prior to and post enrolment was considered, and visits outside the observed period occurred at regular three monthly intervals.

Scenario 2. A period of 5 years prior to and post enrolment was considered. Visits outside the observed period occurred at regular three monthly intervals.

Scenario 3. A period of 10 years prior to and post enrolment was considered and 10% of visits outside the observation period occurred one month later than expected.

Scenario 4. A period of 10 years prior to and post enrolment was considered and 25% of visits outside the observation period occurred one month later than expected.

Scenario 5. A period of 10 years prior to and post enrolment was considered and 10% of visits outside the observation period were missed.

Scenario 6. A period of 10 years prior to and post enrolment was considered and 20% of visits outside the observation period were missed.

Sensitivity analysis: Results

Table 3: Estimated time to two consecutive measurements less than 350 cells/mm3 under various scenarios

Patient	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
А						
	3.1552	0.0050	3.0734	3.1271	3.0219	2.5941
В						
	2.3046	2.3046	2.2926	2.2926	2.2926	2.2926
С	-	-	-	-	-	-
	3.2608	3.2056	3.2056	3.2073	3.2119	2.9572
D	-	-	-	-	-	
	0.2043	0.2043	0.2030	0.2097	0.1432	0.0208

- Exercise caution when interpreting estimated times to threshold in patients with very slow decline
- Methodology appears robust for the "general" patient

Other areas of application

- Diabetes
- Prostate cancer
- Abnormal aortic aneurysms

Conclusions and further work

- Methodology proposed is flexible and computationally efficient
- Additional sensitivity analysis is required Drop-out (MNAR?)
- Extension to accommodate correlated residuals
- Different stopping rules

References

WHO (2015). Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. World Health Organization

Sweeting, M. and Thompson, S. (2012). Making predictions from complex longitudinal data, with application to planning monitoring intervals in a national screening programme. *Journal of the Royal Statistical Society, Series A (Statistics in Society)* **11**, 569–586.

Mandel, M. (2010). Estimating disease progression using panel data. *Biostatistics* **175**, 304–316.

Verbeke, G. and Molenberghs, G. (2009). *Linear Mixed Models for Longitudinal Data*. New York: Springer.

