Pharmaceutical Statistics Journal Club 15th October 2015

Missing data sensitivity analysis for recurrent event data using controlled imputation

Authors: Oliver Keene, James Roger, Ben Hartley and Mike Kenward

Pharmaceutical Statistics, 13 (4):258-264

Speaker: Oliver Keene (GSK)

Acknowledgements

- James Roger, LSHTM
- Mike Kenward, LSHTM
- Ben Hartley, Veramed

Outline

- DREAM trial: mepolizumab for severe uncontrolled eosinophilic asthma
- Analysis of recurrent event data
- De Jure and de Facto estimands
- Application of pattern mixture models to recurrent event data
- Options for modelling post-withdrawal period for discontinuations
- Results for DREAM trial

DREAM study design

Double Blind Treatment 52 Weeks

Total N=616

Mepolizumab 75mg IV N=153

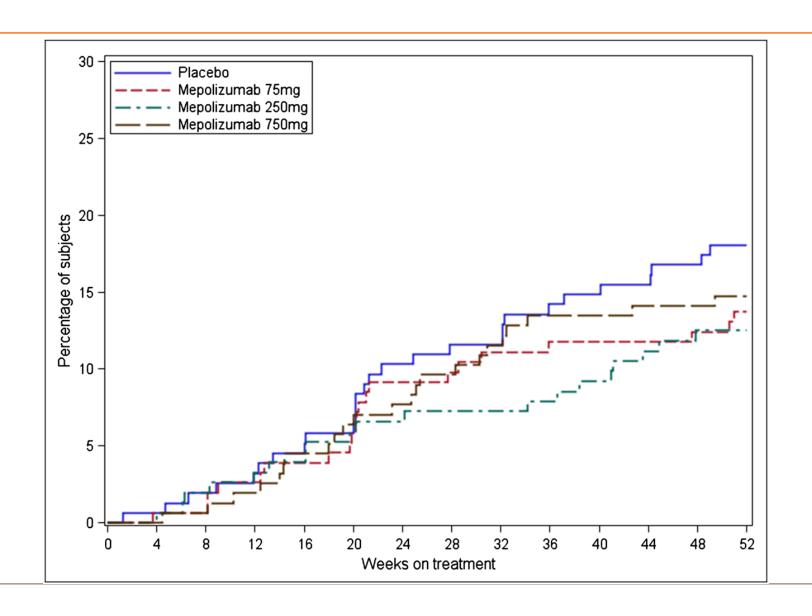
Mepolizumab 250mg IV N=152

Mepolizumab 750mg IV N=156

Placebo IV N=155

Subjects discontinuing randomised treatment not followed up off treatment

Withdrawals over time



Withdrawals

	Placebo	75mg	250mg	750mg
	N=155	N=153	N=152	N=156
Withdrawn	28 (18%)	24 (16%)	21 (14%)	23 (15%)
Reason for withdrawal				
Withdrew consent	11 (7%)	8 (5%)	2 (1%)	7 (4%)
Adverse event	6 (4%)	5 (3%)	8 (5%)	9 (6%)
Lack of efficacy	8 (5%)	6(4%)	4 (3%)	4 (3%)
Investigator discretion	1 (<1%)	3 (2%)	3 (2%)	3 (2%)
Lost to follow-up	1 (<1%)	1 (<1%)	4 (3%)	0
Protocol deviation	1 (<1%)	1 (<1%)	0	0

DREAM trial: model for primary analysis

- Primary endpoint: frequency of clinically significant asthma exacerbations
- Primary analysis: negative binomial model
- Each person has own Poisson rate of events
 - As a set follow a gamma distribution across patients
- Variation among patients explicitly captured as part of the model
 - No "correction" needed
- Model allow for different lengths of follow-up for each patients
- Generalised linear model, can incorporate baseline covariates

Estimands: De Jure and De Facto

De jure (efficacy) estimand:
expected treatment effect if
treatments were taken as
specified in the protocol

De facto (effectiveness)
 estimand: difference in
 outcome improvement for all
 randomized patients, assesses
 benefit of a treatment strategy
 relative to a control

DREAM trial

- Primary analysis: negative binomial model
 - Missing at random (MAR) assumption
 - conditional on the data observed (including covariates and data prior to withdrawal) unavailable data are randomly missing.
 - Implies future statistical behaviour of outcomes is the same for those who remain in the trial and those who withdraw conditional on their history
 - Addresses a De Jure estimand
- Need for alternative De Facto estimand

Pattern mixture models

- General framework described in earlier talk by Bohdana Ratitch et al
- Control-based imputation for longitudinal continuous data described by James Carpenter/ James Roger / Mike Kenward in 2013 paper
 - Model post-withdrawal outcome for active (test) to reflect the behaviour of later outcomes on placebo (reference)
- Can this be applied to recurrent event data (exacerbations)?

Recurrent event trials: early withdrawals

- If a patient has y1 exacerbations during period 1 and then withdraws
- We want to estimate y2, the number of unobserved exacerbations, given what we have actually seen

Multinomial models (Roger/Kenward)

- Negative binomial is special case of negative multinomial model
- Conditional distribution of the missing values for partially observed negative multinomial data is also negative multinomial
- Missing data can be imputed using the appropriate negative multinomial models
- Numbers of events before and after withdrawal are seen as two periods with a joint negative multinomial distribution, with Y₁ observed and Y₂ unobserved

Impute unobserved exacerbations

For a given patient, distribution Y2|Y1 is a function of:

- Observed y1
- Estimated dispersion (assumed same in both periods)
- Estimated mean (model predicted) rate period 1
- Imputed mean rate period 2
 - Options for this described on next slide

Multiple imputation

- Take a random sample from Y2|Y1, add this to the y1 we observed for the patient
- Analyse the data using PROC GENMOD as usual
- Repeat analysis multiple times
- Combine estimates using Rubin's rules

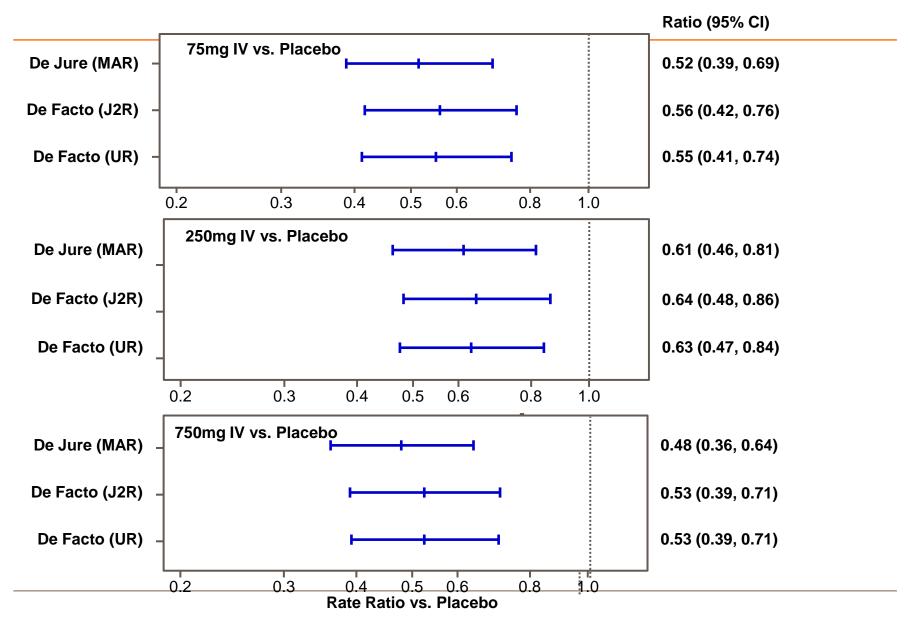
Imputing patient's expected rate during period 2

Placebo patients imputed under MAR

Method for Active Treatment	Period 1	Period 2	Residual from period 1?
MAR	Active	Active	Yes
Copy Reference (CR)	Placebo	Placebo	Yes
Jump to Reference (J2R)	Active	Placebo	Yes
Unconditional Reference (UR)	Active	Placebo	No
Delta methods	Active	Active - Delta	Yes
Specific off treatment say κ	Active	Карра	No

⁻ Can make imputation method depend on reason for withdrawal

DREAM: de jure and de facto estimands



Conclusions

- Likelihood analyses produce De Jure estimands under MAR assumption
 - What would happen if patient continued on treatment
- Need De Facto (ITT) estimands
 - Compare results of initial randomisation
 - Requested by regulatory authorities
- One possible approach is to use controlled imputation for recurrent event data

References

- Carpenter JR, Roger JH, Kenward MG. Analysis of longitudinal trials with protocol deviation: a framework for relevant, accessible assumptions, and inference via multiple Imputation. Journal of Biopharmaceutical Statistics 2013,23: 1352-1371..
- Keene ON, Jones MRK, Lane PW, Anderson J. Analysis of exacerbation rates in asthma and chronic obstructive pulmonary disease: example from the TRISTAN study. Pharmaceutical Statistics 2007; 6:89-97.
- Keene ON. Intent-to-Treat analysis in the presence of off-treatment or missing data. Pharmaceutical Statistics 2011, 10:191–195.
- Leuchs A-K, Zinserling J, Brandt A, Wirtz D, Benda N. Choosing appropriate estimands in clinical trials. Therapeutic innovation and regulatory science 2015, 1-9.
- Ratitch B, O'Kelly M, Tosiello R. Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models. Pharmaceutical Statistics 2013; 12: 337-347.