

Blinded Sample Size Recalculation in Longitudinal Clinical Trials Using Generalized Estimating Equations

Daniel Wachtlin 2013/10/29

Virtual Journal Club

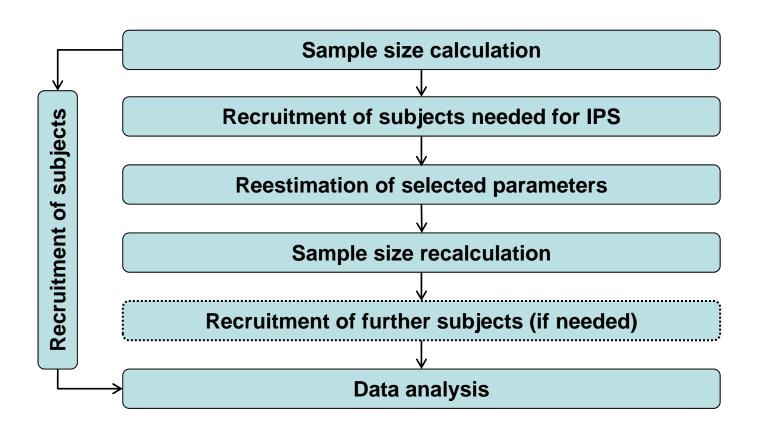
DIA Stat Community & PSI

GEFÖRDERT VOM

Background

- Uncertainty related to initial parameter estimates in the planning stage of clinical trials
- Increased complexity of sample size calculation in longitudinal clinical trials (intra subject correlation)
- One analysis approach: Generalized Estimating Equations (GEE)
- Chance to correct for initial misspecifications would be helpful
- One Solution: Blinded sample size recalculation with Internal Pilot Study (IPS) Design
- Primary question: Is type I/II error preserved within recalculation procedure?

Recalculation procedure (generic)



Simulation study (1)

Investigated setting

```
• Model: y_{ij} = \beta_1 + \beta_2 r_i + \beta_3 j + \beta_4 r_i j + \varepsilon_{ij}
```

- y_{ii} Continuous outcome for subject i at time j
- β Model coefficients
- r_i Treatment indicator of subject i, balanced designs investigated
- j Measurement time j of a subject, j={1,2,3,4,5,6}
- ϵ_{ij} Model error term related to measurement j of subject i
- Two randomized treatments
- Parallel group design
- Balanced treatment allocation
- Parameter of interest: β₄
- Generalized estimating equations: ε_{ii} correlated within subjects

Simulation study (2)

- Sample size calculation
 - Formula of Jung and Ahn (2003)

$$n = \frac{\sigma^2 s_t^2 (z_{1-\alpha/2} + z_{1-\gamma})^2}{\beta_{40}^2 \mu_0^2 \sigma_r^2 \sigma_t^4}$$

$$\sigma^2 = Var(\varepsilon_{ij}). \qquad s_t^2 = \sum_{j=1}^K \sum_{j'=1}^K p_{jj'} \rho_{jj'} (t_j - \mu_1) (t_{j'} - \mu_1).$$

$$\mu_k = \mu_0^{-1} \sum_{j=1}^K p_j t_j^k, k = 1, 2.$$
 $\mu_0 = \sum_{j=1}^K p_j$ $\sigma_t^2 = \mu_2 - \mu_1^2.$

- Constant risk of dropout per period, only permanent dropouts
- Correlation according to the damped exponential family of correlation structures (Munoz (1992)): $Corr(y_{ij}, y_{ij+t}) = \rho^{t^{\theta}}, 0 \le \rho, \theta \le 1$
- Significance level: 5%, Power: 80%

Simulation study (3)

- Reestimation of selected parameters
 - Size of internal pilot study: $n_{IPS} = \pi \cdot n$, $0 \le \pi \le 1$
 - Reestimating covariance matrix
 - Simultaneously estimate ρ , θ , σ^2
 - Damped exponential family of correlation structures (Munoz (1992))
 - Variability of error term identical for treatment groups, subjects and measurement occasions, $Var(\varepsilon_{ij}) = Var(\varepsilon)$
 - Non-linear model
 - Starting values ρ , θ , $\sigma^2 = 1$
 - Minimize unweighted sum of deviations between model based and empirical covariance matrix
 - Reestimating constant risk of dropout
 - Derive from rate of observed values at last measurement time
 - Assume identical risk of dropout for both treatment groups
 - $\hat{h}_{IPS} = 1 \sqrt[5]{\hat{p}_6}$

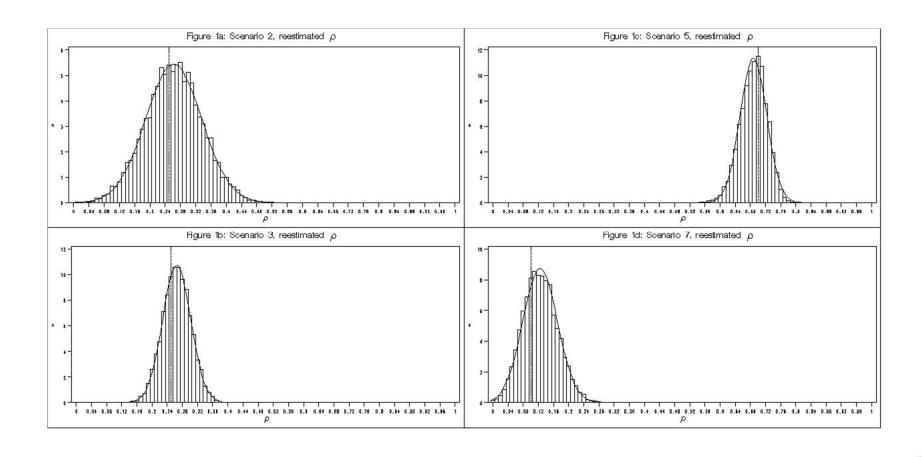
Simulation study (4)

- Sample size recalculation
 - Use updated parameter estimates
 - Blinded procedure
 - Unrestricted design (Birkett/Day (1994))
 - $n_{total} = MAX(\pi \cdot n_{ini}, n_{recalc})$
- Analysis
 - (Weighted) GEE (Robins/Rotnitzky (1995))
 - Inverse probability weighting, weights only differ between measurement times
 - Working correlation matrix = Independent (Mancl/Leroux (1996), Ziegler/Vens (2010))
 - Test $\beta_4 = 0$, one-sided significance level 2.5%
- Simulations based on 10.000 samples under H₀ and H_a

Scenarios

Scen.	ρ	θ	σ^2	h	π	n	n _{IPS}
1	0.25	0.5	1	0.00	0.5	203	102
2	0.25	0.5	1	0.00	0.2	203	41
3	0.25	0.5	1	0.00	8.0	203	162
4	0.7	0.1	1	0.00	0.5	67	34
5	0.7	1	1	0.00	0.5	223	112
6	0.25	0.5	5	0.00	0.5	1015	508
7	0.1	0.1	1	0.00	0.5	172	86
8	0.1	0.9	1	0.00	0.5	197	98
9	0.25	0.5	1	0.01	0.2	208	42
10	0.25	0.5	1	0.05	0.2	231	46
11	0.25	0.5	1	0.01	8.0	208	166
12	0.25	0.5	1	0.05	8.0	231	185

Results (1)



Results (2)

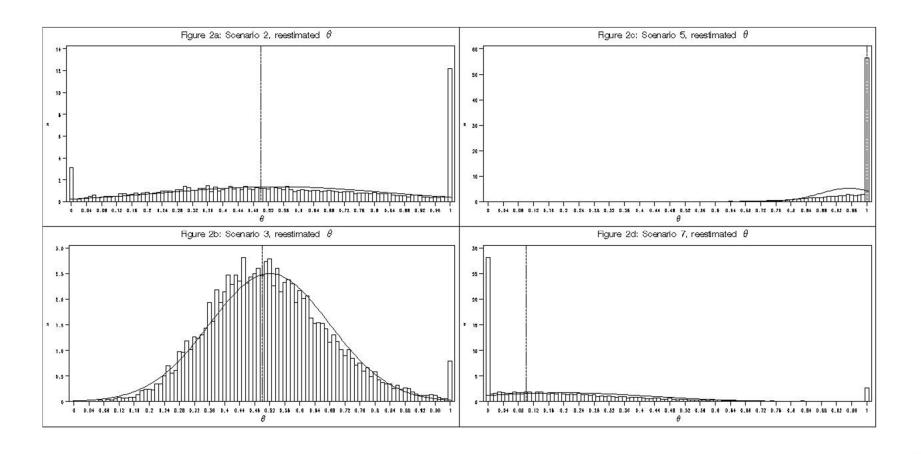


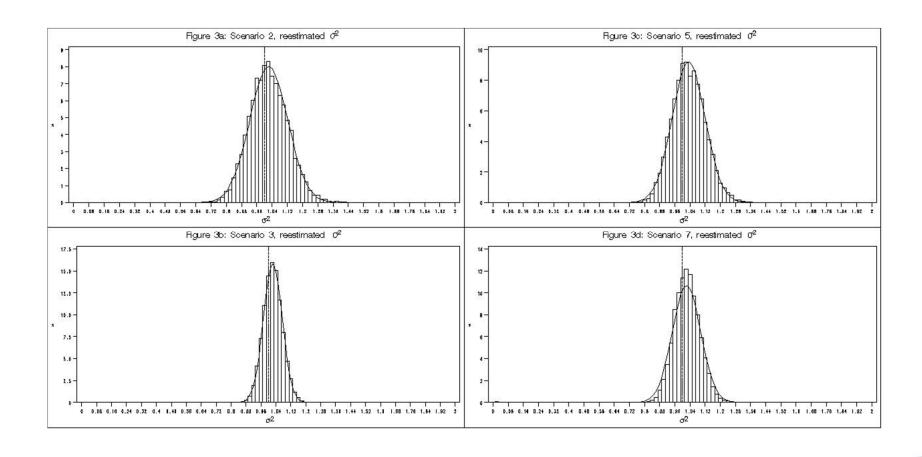
Illustration of results of θ estimates

$$\rho_{ij} = \begin{pmatrix} 1 & 0.5 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 & 0.5 \\ 0.5 & 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 0.5 & 1 \end{pmatrix}, \rho = 0.5, \theta = 0$$

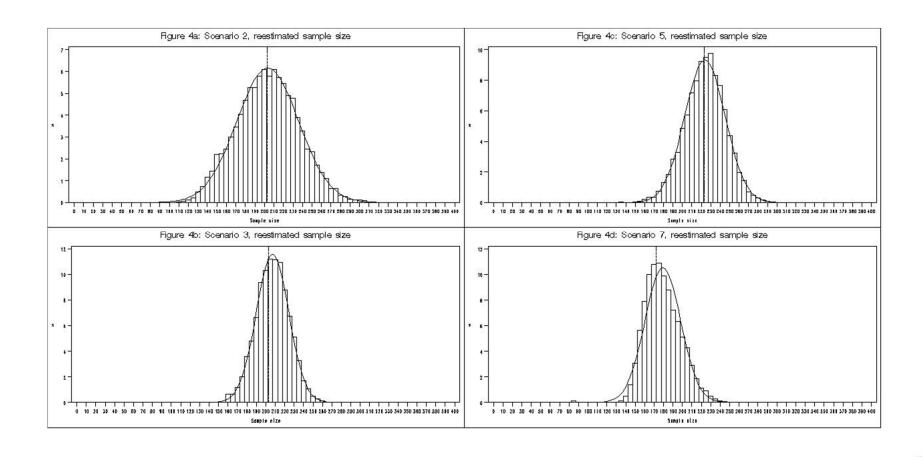
$$\rho_{ij} = \begin{pmatrix} 1 & 0.5 & 0.375 & 0.301 \\ 0.5 & 1 & 0.5 & 0.375 \\ 0.375 & 0.5 & 1 & 0.5 \\ 0.301 & 0.375 & 0.5 & 1 \end{pmatrix}, \rho = 0.5, \theta = 0.5$$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.5 & 0.25 & 0.125 \\ 0.5 & 1 & 0.5 & 0.25 \\ 0.25 & 0.5 & 1 & 0.5 \\ 0.125 & 0.25 & 0.5 & 1 \end{pmatrix}, \rho = 0.5, \theta = 1$$

Results (3)



Results (4)



Results (5)

Scenario	n	n _{IPS}	$lpha_{\sf FIXED}$	(1- γ) _{FIXED}	$lpha_{IPS}$	(1- γ) _{IPS}
1	203	102	2.37	80.34	2.70	80.61
2	203	41	2.87	80.42	2.56	79.20
3	203	162	2.51	80.20	2.49	80.69
4	67	34	2.73	79.93	3.19	82.66
5	223	112	2.67	79.90	2.78	79.90
6	1015	508	2.54	80.36	2.38	79.88
7	172	86	2.54	80.68	2.53	81.23
8	197	98	2.55	80.15	2.54	79.49
9	208	42	2.86	79.88	2.64	79.10
10	231	46	2.57	80.09	2.34	79.37
11	208	166	2.60	80.50	2.66	81.03
12	231	185	2.86	80.01	2.75	80.52

Summary

- Mostly unbiased estimation of ρ , σ^2
- Estimation of θ associated with high variability and risk of bias
- Sample size on average near (slightly above) the fixed sample size results
- Results confirmed in the presence of missing data
- Impact of IPS size on estimates and resulting sample size distribution
- Type I error mostly very near to nominal value
- Robust power results
- Few limitations
 - Starting values for reestimating covariance parameters
 - Bound effects / biased estimates can be anticipated by simulating extreme scenarios
 - Simplified assumptions for investigated setting